lain Gray

Snake
Charming—
The Musical
Python

EXTRAS ONLINE @)\ Springer

Snake Charming—The Musical Python

[ain Gray

Snake Charming—The
Musical Python

@ Springer

lain Gray

AFIMA—Associate Fellow of the Institute
of Mathematics and its Applications

Southend-on-Sea

UK

Additional material to this book can be downloaded from http://extras.springer.com.

ISBN 978-3-319-60659-0 ISBN 978-3-319-60660-6 (eBook)
DOI 10.1007/978-3-319-60660-6

Library of Congress Control Number: 2017947760

© Springer International Publishing AG 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper
This Springer imprint is published by Springer Nature

The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

To Jim Martin, a fellow traveller on the road
to Parnassus, this book is dedicated in
friendship

Preface

Intended Audience

This book is an innovative introduction to Python and its audio-visual capabilities
for beginning programmers, a resource for expert programmers and of interest to
anyone involved in music. It is structured around four extensible, audio-visual
projects on music and sound. The beginner will appreciate the ‘need to know’ basis
of the presentation of Python for each project. Expert programmers will be able to
go straight to the project code, run it and then extend it as they see fit. Musically
interested readers will enjoy the historical and theoretical material at the beginning
of each project, and it may even tempt them to try some coding—it is not too
difficult! The projects are all self-contained but can be extended to incorporate
aspects of the others. Above all, the book is suited for self-study, which should be
playful (pun intended)!

Prerequisites

A minimal understanding of your computer’s operating system is assumed.
In particular, you should be able to

find, create and delete files or folders within the filing system
open, close, save and print files

run program files by opening or ‘double clicking’ them
that’s all!

e

vii

viii Preface
Typography

Normal text will appear in a Times Roman font, whereas Python code will appear in
a monospaced courier font. The first use of a new program construct will be
highlighted as construct. Control and modifier keys will appear between angle
brackets and in a bold typeface as in <return> or <enter>.

A Note on the Code

The code largely complies with functional and procedural paradigms, and a ref-
erence to object-oriented Python is contained in Appendix. In the New Language
Features sections, it is intentionally repetitive and uses many print statements,
rather than breakpoints, to explain its operation. The overall driver has been sim-
plicity of exposition. After all as Albert Einstein said ‘Everything should be made
as simple as possible, but not simpler’.

Structure of Book

In order to achieve expertise in the audio-visual and animation capabilities of
Python, four major projects in music and sound will be developed. The book is
divided into six parts

Part I—Installation, shell, editor, Python syntax and package management
. Part II—Sound visualisation

Part [II—Sound creation

Part IV—Harmonic visualisation

. Part V—Composition

. Part VI—Future development

oW —

Part II-Part V comprise the projects and are each split into background and
coding chapters.

Chapter 14 contains suggestions and guidelines for extending the projects.
Finally, all the internet links and bibliography are in Appendix.

This book and its projects loosely parallel the historical development of music;
from Rhythm II through Melody III to Harmony IV, and finally on to
Composition V.

Edinburgh, UK Jain Gray
2017

Acknowledgements

A book like this does not spring fully armed like Athene from the thigh of Zeus, but
relies on the active involvement of several groups of people

1.

2.
3.

my friends and colleagues in Radar Systems Design for discussions over several
decades.

my parents for constant support and encouragement.

my editors at Springer, Beverley and Nancy, for their courtesy and patience.

ix

Contents

Part I Snake in the Grass—Python and Its Environment

1
2

Imnstalling Python 3
The Python Shell—-IDLE 7
2.1 Basic Python Syntax. 8
211 Comments.uiiiiii 8
2.1.2 Indentation and Block Structure 8
2.13 Inputand Output............. 8
2.1.4 Declaration of Simple Types and Type Casting. 9
2.1.5 Arithmetic Operators and Precedence 9

2.1.6 Conditional Expressions, Relational and Logical
OPerators.ottt 9
2.1.7 Conditional Statements 10
2.1.8 Looping Statements. 10
2.2 Entering Python Code. 11
2.2.1 The Python Interpreter. 11
2.2.2 The Python Editor. 12
Package Management, 15
3.1 Anaconda. 15
3.1.1 Installing Anaconda............................ 16
3.1.2 Using Anaconda 17
3.2 AIternatives.t 18
Audacity®. 19
4.1 Installing. 19
42 USING . oot 19

xi

xii Contents

Part I Banging the Drum—Visualising Sound

5 Mark Kac (1914 t0 1984)
5.1 Hearing the Shape of aDrum.
5.2 Riding the Waves—Bessel Functions
5.3 Vibrating Plates—Chladni and Germain.
54 Drumhead Modes
6 Project Code
6.1 New Language Features
6.1.1 ProjectHeader................
6.1.2 Plotting Bessel Functions
6.1.3 Graphingin3D........
6.1.4 Animation of Square Wave from Summing

Sinusoids.

6.1.5 Animating in 3D, for Wave Propagation Along
an AXIS
6.2 TheCode........ ..o
6.2.1 Project Header...............

Part III Heat in the Desert—Sculpting Sound

7 Joseph Fourier (1768 to 1830)
7.1 The Army of Egypt

7.2 Feeling the Heat—Fourier Transforms

7.3 Chasing Rainbows—Frequency Spectra

8 Bob Moog (1934 t0 2005)
8.1 Analogue Additive Synthesis

8.2 Analogue Subtractive Synthesis
821 Oscillators i

822 Filters

823 Amplifier.

8.24 Envelope Generation.

82.5 Modulation

9 ProjectCode
9.1 New Language Features
9.1.1 Using Tkinter

9.1.2 Project Header..................

9.1.3 Sound Storage.

9.1.4 Harmonic Analysis

9.1.5 Oscillators and Mixer

9.1.6 Low Pass Filtering.

9.1.7 Implement Butterworth Low Pass Filter

9.1.8 Amplitude Envelope Generation

Contents Xiii
9.1.9 Low Frequency Oscillator and Modulation 60
9.1.10 Analysis Displays 61
9.1.11 Graphical User Interface 63
9.1.12 GUI Support for Mixer Button 64
92 TheCode..... ... 65
9.2.1 ProjectHeader................ 65
9.22 Oscillator and Mixer 65
923 Filter. 66
9.24 Amplitude Envelope Generator 67
925 Modulator 67
9.2.6 Amplifier. 68
9.277 Displaysand Output 68
9.28 UserlInterface 69
Part IV The Harmonograph—Victorian Pendulum Toy
10 Hugh Blackburn (1823 to 1909) 73
10.1 Motion of a Damped Pendulum 74
10.2 Blackburn’s Double Pendulum 75
10.3 Harmonic Ratios—The Lateral Harmonograph.............. 76
10.4 Parallels—Bowditch and Lissajous. 76
10.5 Of Gears and Motors—The Pintograph 78
11 Project Code 79
11.1 New Language Features 79
11.1.1 Lissajous’ Figures 79
11.1.2 Damped Orthogonal Pendulums 81
11.1.3 Harmonic Ratios as Fractions 82
11.1.4 UserInterface 83
11.1.5 Project Header.............. 83
112 TheCode i 83
11.2.1 Project Header.............. 83
11.2.2 Orthogonal Polynomials 84
11.2.3 UserInterface 85
Part V Counterpoint a la Mode—Composing Music
12 Johann Joseph Fux (1660 to 1741). 89
12.1 Gradus Ad Parnassum—Counterpoint. 90
12.1.1 Melody—Direct, Contrary and Oblique Motion 90
12.1.2 Harmony—Consonance and Dissonance 90
12.1.3 Species Counterpoint.c........ 91
12.1.4 Modal MusSiC.t 91
12.2 Strict Rules Allow Freedom of Composition 92

Xiv Contents

13 Project Code 93
13.1 The Colours of Noise, 93
13.2 New Language Features 95

13.2.1 Project Header........... 96
1322 Sound Storage.o i 96
13.2.3 MIDI—Musical Instrument Digital Interface......... 96
13.2.4 Composing the Cantus Firmus with Pink Noise
Generation. 97
13.2.5 Sound Generation 98
13.2.6 Sound Output of Cantus Firmus 102
13.2.7 The Rulesin Python 103
13.2.8 Output of Whole, Half and Quarter Notes for
Counterpoint 104
13.2.9 User Interface and Sound 104
133 TheCode 105
13.3.1 Project Header.............. 105
13.3.2 Generating the Cantus Firmus with Pink Noise. 106
13.3.3 Cantus Firmus Dynamics. 106
13.3.4 Rules of Counterpoint 107
13.3.5 Converting MIDI to Frequency 108
13.3.6 Handling Whole, Half and Quarter Notes 108
13.3.7 Stereo Outputt 109
1338 UserInterface 109

Part VI On Safari

14 Where Next? 113
14.1 Generic Header. 113
14.2 Part [I—Visualising Sound 114
14.3 Part II—Creating Sound 114
14.4 Part IV—Visualising Harmony 115
14.5 Part V—Compositiont 116
Curriculum Vitae 117

Appendix: Internet Links, 119

Part I
Snake in the Grass—Python and Its
Environment

Chapter 1
Installing Python

“Latet anguis in herba” Virgil, Eclogues III.

© Springer International Publishing AG 2017
1. Gray, Snake Charming—The Musical Python,
DOI 10.1007/978-3-319-60660-6_1

4 1 Installing Python

Python is a simple and elegant language that is easy to learn and install on any
platform. The language is cross-platform and truly multi-paradigm embodying func-
tional, imperative and object-oriented features. A simple development environment
IDLE is also installed with Python allowing interactive programming and syntax
aware code editing. Sophisticated package managers allow easy access to pre-made
scientific and graphics libraries amongst many others.

On visiting the Python homepage https://www.python.org you will see.

ece A = “

praral v

& python

About Downloads Documentation Community

‘ Compound Data Types

O Get Started & Download) Docs & Jobs

r relaunched
-run job board is the

Clicking on the ‘Downloads’ tab followed by ‘All releases’ in the left hand sidebar
you will then see

https://www.python.org

1 Installing Python 5

e 8 ¢ alol® e . °
genersi v Fago Museums Grems Buss Msog v Pyiran v

Looking for a specific release?

Python releases by version number
Release versbon Release date Click for more
Python 1.4.5 2016-06-27
Pythen 152
Prthon.7.43
Pythen 344
Pythen 351
Python 2.7.11

Python 31.5.0

LI I R I R

so click on ‘Download Python 3.5.2° to have a graphical installer loaded on your
machine. Open this installer by double clicking on it and that is all—light blue touch
paper and retire! The homepage identifies your target architecture and will install
the relevant version of Python, and as the language is machine independent Python
source code will run on any supported architecture. Note that Python 3.5.2 was the
latest version at time of press but the installation procedure above will always obtain
the latest version.

Finally clicking on the ‘Documentation’ tab followed by ‘Docs’ in the left hand
sidebar will bring you to the documents page

6 1 Installing Python

eve e ol ® 4 Pyihen Safew - . o

penersl v R Daterss Mussoms Cioma Deaen Mosg v Pytnen v

o Beginner o Moderate & Advanced

= Python 3.x Resources = Python 2.x Resources

from where you can access tutorials and the main language references online.

Chapter 2
The Python Shell—IDLE

IDLE, the Integrated Development and Learning Environment, is a shell that comes
bundled with the Python distribution on download.
Locate the Python 3.5 folder, open it, find IDLE and open it seeing a large empty

window headed by

[] [] Python 3.5.2 Shell
Python 3.5.2 (v3.5.2:4def2a2901a5, Jun 26 2016, 10:47:25)

[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
Type "copyright", "credits" or "license()" for more information.

e

Ln: 4 Col: 4

the final >>> prompt is where you can enter code interactively for the Python

interpreter.
If on any platform you see the following warning message

@ @ *Python 3.5.2 Shell*

Python 3.5.2 (v3.5.2:4def2a29@1a5, Jun 26 2016, 10:47:25)

[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

Type "copyright", "credits" or "license()" for more information.

>>> WARNING: The version of Tcl/Tk (8.5.9) in use may be unstable.
Visit http://www.python.org/download/mac/tcltk/ for current information.

Ln: 3 Col: 6

it is safe to ignore this and type <return> or <enter> carrying on with the rest
of the chapter. You will only be using “Tcl/Tk’ within the ‘spyder’ environment
of Chap.3. To clear this warning you have to install the latest Tcl/Tk 8.5 release
which was 8.5.18.0 at the time of writing. Visit the ActiveState Tcl/Tk down-
load page at http://www.activestate.com/activetcl/downloads and scroll down to

© Springer International Publishing AG 2017
1. Gray, Snake Charming—The Musical Python,
DOI 10.1007/978-3-319-60660-6_2

http://dx.doi.org/10.1007/978-3-319-60660-6_3
http://www.activestate.com/activetcl/downloads

8 2 The Python Shell—IDLE

DOWNLOAD TCL: OTHER PLATFORMS AND VERSIONS

Version Windows Windows Mac OS X Linux Linux
(x86) (64-bit, x64) (10.5+, xB6_64/x86) (x86) (x86_64)

8.6.4.1 Windows Installer (EXE) Windows Installer (EXE) Mac Disk Image (DMG) AS Package AS Package

8.5.18.0 Windows Installer (EXE) Windows Installer (EXE) Mac Disk Image (DMG) AS Package AS Package

from where you can download the latest 8.5 version to install for your platform.

2.1 Basic Python Syntax

Python itself has an ‘official’ tutorial accessible as described in Chap.1 or as in
Chap. 3. The aim here is slightly less lofty and is intended as a ‘get you started’
subset of Python. More advanced concepts such as functions or datatypes such as
lists will be introduced in the projects as and when required.

2.1.1 Comments

Comments to be ignored by the interpreter are introduced by the # (hash) charac-
ter (<option> or <alt> +3 on many keyboards). Multi-line comments can be
delimited (before and after) by ”’ (three single quotes).

2.1.2 Indentation and Block Structure

Python is block structured but uses code indentation, rather begin...end, to delimit
related blocks of code.

2.1.3 Input and Output

The most basic functions are input() and print().

http://dx.doi.org/10.1007/978-3-319-60660-6_1
http://dx.doi.org/10.1007/978-3-319-60660-6_3

2.1 Basic Python Syntax 9

2.1.4 Declaration of Simple Types and Type Casting

Only the numeric type of int and float will be used here: an int holds an integer
value and has no decimal point: a float hold a floating point value and has a decimal
point. The two types have different internal representations. Before being used an
alphanumeric variable must be declared to be of a particular type by

1. assigning it to a constant as in a = 0.0

2. making multiple assignments as in a, b, ¢ = 0.0, 1, 2

3. assigning it to the value of an expression as in a = b/c, where b and ¢ have
previously been declared.

Variables of one type may be cast as the other by using the int() and float() functions.

2.1.5 Arithmetic Operators and Precedence

The basic arithmetic operators are +, —, *, / supplemented by ** for exponentiation,
/I for floor (integer) division and % for remainder. Parsing of arithmetic expressions
is carried out left to right obeying the following order of precedence

1. (highest) ** and unary minus but see note below

2. %,/,//, %
3. (lowest) +, —

Note that ** is higher than left unary minus, ** is lower than a right unary minus in
terms of precedence.
This order of precedence may be changed by using parentheses ().

2.1.6 Conditional Expressions, Relational and Logical
Operators

Python has a cast of ‘all the usual suspects’ for its relational operators, which are

== equals. Note that a single = is only used for declaration or assignment
! = not equals

> greater than

>= greater than or equals

< less than

<= less than or equals.

SNk LD =

These all return Boolean values of True or False and are ranked below ‘+, —’ in order
of precedence. They can be chained together to form multiple relational expressions
suchasx <y < z.

10 2 The Python Shell—IDLE

Logical operators can be used to combine such Boolean values into composite
conditional expressions with a value of True or False. They rank lower than the
relational operator and have the following order of precedence

1. not expr—True if expr is False, False otherwise
2. exprl and expr2—True if both exprl and expr2 are True, False otherwise
3. exprl or exprl—True if either exprl or expr2 is True, False otherwise.

Conditional expressions can thus be made of one, or more, relational expressions
tied together with logical operators.

2.1.7 Conditional Statements

Multiple line statements are much more easily entered within an Editor shell (see
later section).

Conditional statements are those which allow the selection of a consequence or
alternative statement depend on the evaluation of a conditional expression. They
come in three flavours which are best illustrated by examples.

1. conditional statements have a simple structure and are most often used for boolean
assignments, thus out=x and not y or not x and y

2. inline if is used for conditional assignment and has a simple structure, thus
abs=—x if x<0 else x

3. if, elif, else conditional statements will perform blocks of statements, after each:,
dependent on the result of the conditional expression. elif short for else if allows
for nested conditional statements. As described earlier indentation is used to
distinguish blocks. For example

if number<O0:

print (’'negative’)
elif number>0:

print (’'positive’)
else:

print(’'zero’)

2.1.8 Looping Statements

Multiple line statements are much more easily entered within an Editor shell (see
later section).

2.1 Basic Python Syntax 11

Looping statements are those which allow the controlled repetition of a statement
or group of statements. They again come in two flavours which are best illustrated
by examples. The examples are in the Python editor section and cover both simple
versions of for loops and while loops. No attempt has been made to explain list
types, or in (membership) operators as such details are deferred to later Project Code
chapters.

2.2 Entering Python Code

IDLE supports two types of shell

1. the Python shell which support interactive development via the Python interpreter
2. one or more Editor shells which allow you to edit and save Python code.

2.2.1 The Python Interpreter

Type the following into the IDLE Python interpreter shell, (comments are optional),
followed by <return> or <enter> for each line and observe the output.

#multiple declarations

a,b=355,113

#multiple assignments

p,q,r=a/b,a//b,a%b

#multiple prints

print(p,q, r)

s=float(a)+r/b

print(s)

p==s

generally unsafe to use == (equality) on floats

Boolean declarations

x,y,out=False, True,False

"exclusive or’ as a conditional expression

out=x and not y or not x and vy

'abs’ as an inline if statement

abs=—x if x<0 else x

12 2 The Python Shell—IDLE

2.2.2 The Python Editor

Unfortunately the Python interpreter shell vanishes on quitting IDLE. to recall your
work you must create a new editor shell, type in your program and save it with a .py
extension. Then on restarting IDLE open your file to run it, or ‘run module’ in the
Python shell via the Run menu in the Editor shell. The editor offers many features like
automatic syntax highlighting, auto-completion of language words, auto-indentation
of blocks and highlighting parenthesised expressions.

Open a new Editor shell, and type the following into the IDLE editor shell, (com-
ments are optional). Save your work in ‘test.py’, reopen as described above and
observe the output. Note that although strings are used this is not a ‘hello world’
program

read in number

number=0

number=int (input (' number="))

#1f, elif, else conditional statement

if number<O0:

print (’'negative’)
elif number>0:

print (’'positive’)
else:

print(’zero’)

1list declaration

sol_fa=['do’,’'re’,'mi’,’'fa’,’'sol’,"la’,'ti’, 'do’]

note=’'do’

simple for loop

for note in sol_fa:

print (note)

feel free to sing along

c=10

simple while loop

while c>o:

print(c)
c=c—1

print (’blast off’)

2.2 Entering Python Code

Finally the syntax highlighted IDLE editor window for ‘test.py’ looks like

[N) test.py - [Usersfiaingray/Documents/Tex/snake code/test.py (3.5.2)
read in number
number=0
number=int(input('number="))
if,elif,else conditional statement
if number<@:
print{'negative')
elif number>@:
print('positive')
else:
print('zero')
list declaration
sol_fa=['do','re','mi','fa"',"'sol",'1la"',"'ti", 'do']
note="'do'
simple for loop
for note in sol_fa:
print(note)
feel free to sing along
c=10
simple while loop
while ¢>0:
print(c)
c=c-1
rrint('blast off')

Ln: 24 Col: 0

13

¥

Chapter 3
Package Management

Over the years the Python community has developed many library packages to expand
and enhance the basic Python implementation. Of most relevance for the projects in
this book are the following three packages

1. NumPy—a specialised numerical package adding random numbers, Fourier
transforms and linear algebra over multi-dimensional matrices

2. SciPy—a stack of packages supporting scientific applications

3. Matplotlib—support for two and three dimensional graph plotting and visualisa-
tion

Note that packages are also referred to as libraries and modules elsewhere, but the
generic term package will be retained throughout this book.

As well as the packages it is very useful to have a package manager to automati-
cally install them and keep them up to date.

3.1 Anaconda

Anaconda provides the most comprehensive package manager currently available for
Python as well as giving direct access to supporting applications and documentation.
All the packages are automatically installed and updated by Anaconda.

During the production of this book Python was upgraded from version 3.5.1 to
version 3.5.2, Anaconda automatically upgraded on being started up.

© Springer International Publishing AG 2017 15
1. Gray, Snake Charming—The Musical Python,
DOI 10.1007/978-3-319-60660-6_3

16 3 Package Management

3.1.1 Installing Anaconda

Installing Anaconda and the Python Packages could not be simpler, visit https://
www.continuum.io/downloads where you will see

ene ¢ I @ 0% & continuuemio . o
geversl v Mado Oaleries Museums Ciroma Buses Mosg > Pytton v i

LOGIN SUPPORT CONTACT

CONTINUUM

ANACONDA COMMUNITY SERVICES SOLUTIONS ABOUT RESOURCES

ANACONDA DOWNLOAD

DOWNLOAD ANACONDA NOW! J
ANACONDA

now available for

cloudera

Anaconda is the leading open data science platform powered by Python The open source version of
Anaconda is a high performance distribution of Python and R and includes over 100 of the most popular GET NOW

Python, R and Scala packages for data science. Additionally, you'll have access to over 720 packages that

Jump to: Windows | 05 X | Linux

Get Superp s with A d

can easily be installed with conda, cur renowned package, dependency and erwironment manager, that is
included in Anaconda. Anaconda is BSD licensed which gives you permission to use Anaconda
commercially and for redistribution. See the packages included with Anaconda and the Anaconda

changelog. VIEW OUR
Which version should | download and install? WEBINARS

g and previous

Because Anaconda includes installers for Python 2.7 and 3.5, either is ine. Using either version, you can
use Python 3.4 with the conda command, You can create a 3.5 environment with the conda command if

you've downloaded 2.7 — and vice versa,
VIEW NOW

T you don't have time or disk space for the entire distribution, try Miniconda, which contains only conda
and Python, Then install just the individual packages you want through the conda command,

A da for Wind

Scroll down to your computer platform and choose the Python 3.5 installer, prefer-
ably if a graphical installer is available use it. Follow the on-screen instructions, light
blue touch paper and retire! You will then have an Anaconda folder containing all
the packages and a Navigator used to access everything in this folder.

Om our experts.

https://www.continuum.io/downloads
https://www.continuum.io/downloads

3.1 Anaconda 17

3.1.2 Using Anaconda

Anaconda is launched by opening the Navigator to display its home screen

e0e () Anaconda Navigator
) anaconbanavicaior [ey
Honwe My Applications | Ratresn
o o o| &
S
Jupyter @
-
glueviz notebook orange-app
within ialed Gal 3 [T ‘data analysis for NOVIoe and expert.
deserining the data analysis. Irneraciive workliows win a lange
Tooboa.
o7z r 410 10
o -3

5

figures. Scantific PYihon Development

SyTiax EnviFlonmant. Powedfl Python IDE

with advanced Inforactive
ﬁm

r o420 238

| / Launch |

L€

Note that some applications may have to be installed before being used: simply
press their install buttons. The home screen will let you access documentation includ-
ing tutorials via the left hand side tabs. For the projects launch Spyder and you will
see

18 3 Package Management

a large syntax aware editor window on the left, an object inspector on the top right
and an interactive IPython window in the bottom right. IPython is an improved IDLE
with parenthesis matching, automatic completions and many other enhancements,
but note that on a Mac instructions which use the <control> key should use the
<command > key instead.

3.2 Alternatives

Although Anaconda provides comprehensive package management for Python your
needs may be more specialised or limited and Anaconda is like "using a sledgeham-
mer to crack a nut’! As honest advertisers and opinion pollsters should say: “there
are other products (or parties) available”. These include, but are not limited to

. PyQt—a binding of Python to the multi-platform Qt user interface

. PySide—another binding of Python to the multi-platform Qt user interface
. wxPython—a binding of Python to the wxWidgets C++ user interface

. Python(x.y)—a scientific and engineering packaging of Python

AW N =

The PyQt GUI already comes bundled with Anaconda. Please be aware that you may
probably have have to manually upgrade any included packages within them: caveat
emptor.

Chapter 4
Audacity®

Unfortunately the current ‘state of the art’ in Python precludes simultaneous sound
output, but the use of intermediate ‘.wav’ files facilitates analysis, recording and
manipulation of these sound files. A free, open source program Audacity is very
mature and stable (for all platforms) and thus is recommended for sound playback.

4.1 Installing

Go to http://www.audacityteam.org and download Audacity for your platform, tak-
ing care to observe any platform specific notes and the release notes. The manual,
containing a tutorial, is also accessible from the home page.

4.2 Using

On opening Audacity you will see

© Springer International Publishing AG 2017 19
1. Gray, Snake Charming—The Musical Python,
DOI 10.1007/978-3-319-60660-6_4

http://www.audacityteam.org

20 4 Audacity®

LN]

W05 7| A e v s s e it a2 5+ 30
LA L 8 LI LINL) s e Y e s s |

2 ho o <|rmimluia] []-[[8] [Als[2[o]r]—0
| commso B2 usamsocoore [H 2wt B4 bornoues B
-1.0 1.8

2.0 30 40 5.0 6.0 7.0 80 2.0

| -t ——— Qi e rora—
= @ = [00n00m00.0004% 00A0OmO0000sY 0000 mO0.000s

and as you are only wanting to play ‘.wav’ files press the > in the top left corner.
Audacity provides many more sophisticated tools for multi-track recording, analysis
and playback which are outwith the scope of the current book.

Audacity® is a registered trademark of http://www.audacityteam.org.

http://www.audacityteam.org

Part 11
Banging the Drum—Visualising Sound

Chapter 5
Mark Kac (1914 to 1984)

Mark Kac was a Polish mathematician specialising in probability theory, who did
notable work with Pal Erdos and Richard Feynman. Today he is most often remem-
bered for an acoustical paper on hearing drum shapes.

© Springer International Publishing AG 2017 23
1. Gray, Snake Charming—The Musical Python,
DOI 10.1007/978-3-319-60660-6_5

24 5 Mark Kac (1914 to 1984)

5.1 Hearing the Shape of a Drum

In his seminal 1966 paper “Can you hear the shape of a drum?” Kac posed a question
which was only resolved, in the negative, two and a half decades later in 1992. The
paper delightfully explores the mathematics required to extract the timbre (tone
colour or frequency spectrum) of an instrument with different boundary shapes
(drumheads), purely from hearing it play a note. As the paper talks more about
tambourines than drums, a more accurate, but slightly less catchy title, would have
been “Can you hear the shape of a membranophone?”’!

The question then boils down to do unique drumheads have unique timbres, or
are there any cases where different shapes produce identical (isospectral) timbres?
This question was immediately answered, in the negative, by the existence of a pair
of differently shaped drums in the sixteenth dimension which were isospectral, but
this was rather hard to visualise! However in 1992 Webb and Wolpert constructed
the following pair of isospectral drums in the more familiar second dimension.

J
L]

5.2 Riding the Waves—Bessel Functions

This section which is more mathematically challenging may be safely skipped, at
least on first reading, without losing the theme of this chapter.

In one dimension waveforms can be described by Fourier analysis as being com-
posed of the sum of sinusoids, at integral harmonic intervals as discussed in Chap. 7.
This is true for instruments such as trumpets, violins and clarinets.

With percussion, such as drums, wave propagation over a two dimensional mem-

brane is governed by Bessel’s differential equation, x? - % +x- j—'; + @2 —a?)-
y = 0. Solutions of this equation for a value of x = 0 are known as Bessel functions
of the first kind and can be used to model the modes of vibration of a thin circular,
or annular, membrane such as a tambourine or head of a drum. Bessel functions of

the first kind J,, for o = 0, 1, 2 are plotted below.

http://dx.doi.org/10.1007/978-3-319-60660-6_7

5.3 Vibrating Plates—Chladni and Germain 25

1.0 1,09
J,(x) ==——
0.8 \ L) ==+~
0.6 -
IK \\f-
0.4 e

0.2 F v Y AL O
: T T\ 7 N T N e
I .'I'I ! o / BN A N \
i/ v I\ ; AL
A : \ / A \ /
0.0 1\ b If \\ 7 ;1 . s\ 7
BVVFANEINYY
. * \ 5
\ s ! b A AL
. -'f o
A

LY
-0.2 \ p N =7 7
<.-.f ﬂ.
-0.4
0 5 10 15 20
X

5.3 Vibrating Plates—Chladni and Germain

In the late 18th and early 19th century the German physicist Ernst Chladni, the “father
of acoustics”, conducted a series of experiments to determine the modes of vibration
of a resonating metal plate. The experiment consisted of a centrally mounted thin
square metal plate with fine sand scattered over its upper surface. This could then be
bowed to resonance and fingers placed at points around the edge. The sand would
settle in areas of no movement indicating the various modes of vibration of the plate.

26 5 Mark Kac (1914 to 1984)

Even today Chladni figures are still used in the design of sounding backs of stringed
instruments such as a guitar.

SEBE08

T2Hz 95Hz 109Hz 128Hz
240Hz 378Hz 338Hz 352Hz 426Hz

On seeing Chladni’s demonstrations in Paris Napoleon offered a prize for the best
mathematical explanation of the vibrating patterns observed. The prize was even-
tually won, at the third attempt, by Sophie Germain, a self taught mathematician:
being a woman she was barred from attending the Ecole Polytechnique or even from
collecting her prize in person. Despite friendships, by correspondence, with J.L.
Lagrange, A.M. Legendre and C.F. Gauss, the ’prince of mathematicians’, it was
only through her friendship with J. Fourier, the subject of Chap. 7, that she was able
to attend sessions of the Academy. All this prejudicial treatment might provoke a
latter day Cicero to exclaim “O tempores, O mores™: “what times, what customs”!
Although this section has been an aside from the main theme of this chapter it has
illustrated interesting parallel work being done on two dimensional elasticity.

5.4 Drumhead Modes

Returning to thin elastic circular membranes which have wave propagation governed
by solutions to Bessel’s differential equation. The harmonics are no longer sums
of integer multiples of the fundamental frequency and so euphonic (see Chap.7).
Instead drumhead modes are composed of multiple inharmonic partials, non-integral
multiples of the fundamental frequency, and so are cacophonic.

In two dimensions these drumhead modes look like as contour plots

Mode 01 n 21 02 31 12

O

2 159f1 274f, 230f, 265f 292f,
Mode 41 51 32 61

Adjacent

segments 376 350f, 3.60f, 3.65f 4.06f, 4.15f,

are moving
in opposite After Berg and Stork
directions,

http://dx.doi.org/10.1007/978-3-319-60660-6_7
http://dx.doi.org/10.1007/978-3-319-60660-6_7

5.4 Drumhead Modes 27

Whereas in three dimensions, with height exaggeration, they look like

Animation of these modes is by a double buffering technique. Two identical
Buffers

1. the Display buffer is a frozen version of the image currently being displayed
2. the Drawing buffer is a dynamic version of the next image currently being drawn

along with a pair of pointers to each buffer. On completion of the drawing the two
pointers are swapped over. This makes the current Display buffer the previous Draw-
ing buffer, and the new Drawing buffer the previous Display buffer. Compare this
with a single buffer is being updated while it is being displayed, as in the Victorian
Zoetrope, resulting in a much more distracting, flickery, displayed image.

Chapter 6
Project Code

Matplotlib, bundled with the Python distribution, was originally a two dimensional
plotting package offering graphing facilities comparable to its commercial rivals.
Recent releases have enhanced this by adding three dimensional graphics and ani-
mation capabilities. This project will develop the graphics and animation facilities
required to produce an animated circular drumhead as in Chap. 14.

6.1 New Language Features

Project Headers given in New Language Features are applicable only to this section.

6.1.1 Project Header

You will need to use some features of NumPy, SciPy and Matplotlib for this project
so enter here

import numpy as np

from scipy import special

import matplotlib.pyplot as plt

Where the lines mean

1. Short alias for package NumPy
2. Extract package special from SciPy
3. Short alias for package pyplot within Matplotlib.

© Springer International Publishing AG 2017 29
1. Gray, Snake Charming—The Musical Python,
DOI 10.1007/978-3-319-60660-6_6

http://dx.doi.org/10.1007/978-3-319-60660-6_14

30

6.1.2 Plotting Bessel Functions

As a simple example of graphing functions type into ‘bessel.py’

@)}

import numpy as np

import scipy.special as spe

import matplotlib.pyplot as plt

plt.ion()

plt.grid()

x=np.linspace(0,20,1000)

for alpha in range(3):
y=spe.jv(alpha, x)
plt.plot(x, vy, '-')

plt.show()

Where the highlighted lines show

6 Project Code

switch on interactive plotting, after entering %matplotlib in iPython

. plot basic grid
. set up linearly interpolated x axis

set up y points as Bessel functions (first kind) for various «

. plot (x, y) with solid line
. show plot.

the resulting figure should be compared with that shown earlier

] €] Figure 1

200+ &8 x=10.6989

20

y=0.815323

6.1 New Language Features 31

6.1.3 Graphing in 3D

Type into ‘rainbow.py’

R O R N R

import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D
plt.ion()

fig = plt.figure()

axes = Axes3D(fig)

X = np.linspace(-np.pi,np.pi)

v = np.linspace(-np.pi,np.pi)

X, y = np.meshgrid(x, vy)
z=np.cos (x) *np.sin(y)
axes.plot_surface(x, y, z, rstride=1, cstride=1, cmap=plt.cm.rainbow)
plt.show()

Where the highlighted lines are

. Use the Axes3D function within the mplot3d toolkit

. setup axes

. linearly interpolate x values

. setup a grid over x and y values

. plots surface with row and column spacings and using the rainbow colour map.

The resultant figure is

") .“ \\\ 1] 7, ‘“\ ',.- "

RN \ T R

,m o,.\ \\\\\:\\\\ I \‘\‘!‘\‘1‘\\?#;,,!!";
= W \ W HH il

[l "H iy 20

32 6 Project Code

There is a good example of drawing a circular drumhead in the scipy.special docu-
mentation referenced in this book backmatter.

6.1.4 Animation of Square Wave from Summing Sinusoids

Although Matplotlib provides basic double buffering animation through its interac-
tive functions

1. ion () allowing every plotting operation to update a figure
2. ioff () disabling every plotting operation from updating a figure
3. draw () forces a figure to be redrawn.

There is also an animation module whose most useful functions are

1. TimedAnimation updates the animation every time interval specified in mil-
liseconds
2. FuncAnimation updates the animation every specified function call.

This program illustrates additive synthesis as in Chap. 8 as a simple 2D animation
without redrawing. Type into ‘squsin.py’
import numpy as np
import matplotlib.pyplot as plt
fig, ax=plt.subplots/()
x=np.linspace(0,2*np.pi)
harmOdd=[1,3,5,7,9,11,13,15,17,19,21,23,25]
def synthUpdate (oddHarm) :
sumSin=0
cnt=oddHarm
while cnt>0:]
sumSin=sumSin+np.sin(x*cnt) /cnt
cnt=cnt-2
return sumSin
for harm in harmOdd:
y=synthUpdate (harm)
ax.plot(x, vy)
plt.pause(1l)
Where the highlighted lines are

. list of the odd harmonics

. synthesise the odd harmonics by summation

. overdraw the figure

. pause for one second N.B.the documentation for p1t . pause has the following
caveat “This function is experimental; its behaviour may be changed or extended
in a future release.” It can always be replaced by time.delay in this case.

W N =

http://dx.doi.org/10.1007/978-3-319-60660-6_8

6.1 New Language Features 33

The resultant figure is

OO+ &Eam

6.1.5 Animating in 3D, for Wave Propagation Along an Axis

Using basic double buffering, clearing before redrawing a buffer, and the mplot3d
toolkit, a very effective animation of wave propagation can be created. Type into
‘propgn.py’
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = fig.add_subplot(1l1ll, projection=’'3d’")
x = np.linspace(-np.pi,np.pi,50)
v np.linspace(-np.pi,np.pi, 50)
x, y = np.meshgrid(x, vy)
ax.set_zlim(-1, 1)
axes=None
for phi in np.linspace(-np.pi,np.pi,50):
if axes:
ax.collections.remove (axes)
z=np.cos (x+phi) *np.sin(y)

34 6 Project Code

axes=ax.plot_surface(x, vy, z, rstride=2,
cstride=2, cmap=plt.cm.rainbow)
plt.pause(0.01)

Where the highlighted lines show

. Setup a 3D subplot

. Setup z limits

. Allow first frame to be drawn

. Cleat buffer

. Pause for ten milli-seconds N.B. the documentation for plt.pause has the
following caveat “This function is experimental; its behaviour may be changed
or extended in a future release.” It can always be replaced by time.delay in
this case.

| O R N R

Remember %matplotlib in IPython.

6.2 The Code

Although there is no separate project code for this Part the following generic header
should be used for any of the extensions from Chap. 14.

6.2.1 Project Header

In ‘main2.py enter
from math import *
from fractions import Fraction
import numpy as np
import scipy.special as spe
import matplotlib.pyplot as plt
import matplotlib.animation as anim

http://dx.doi.org/10.1007/978-3-319-60660-6_14

Part 111
Heat in the Desert—Sculpting Sound

Chapter 7
Joseph Fourier (1768 to 1830)

Joseph Fourier (no contemporary photographs exist) a French mathematician and
physicist, was recruited by Napoleon as scientific advisor to his ‘intellectual’ Army
of Egypt, initially to survey a possible Suez canal. Exposure to the desert heat led to
a lifelong obsession with heat and the development of Fourier Analysis.

7.1 The Army of Egypt

What on earth was Napoleon doing campaigning in Egypt and Syria between 1798
and 1801, when his normal battlefields were in Europe? The answer is simple: to
threaten British trade interests with the Indian subcontinent. Of more lasting impor-
tance was his recruitment of over a hundred intellectuals to pursue scientific and

© Springer International Publishing AG 2017 37
1. Gray, Snake Charming—The Musical Python,
DOI 10.1007/978-3-319-60660-6_7

38 7 Joseph Fourier (1768 to 1830)

archaeological studies in the Middle East. Amongst the discoveries of this ‘intellec-
tual army’ were two that still resound today

1. the unearthing of the Rosetta stone and the subsequent decipherment of hiero-
glyphics by Champollion.

2. the study of heat transfer by Fourier leading to the development of Fourier Series
and the Fourier Transform which are central to signal processing.

7.2 Feeling the Heat—Fourier Transforms

After being abandoned in the desert by Napoleon’s return to France, Fourier even-
tually reached Paris in 1801. So convinced had he become of the curative effects
of heat, that he kept his apartments unreasonably hot and was himself wrapped in
blankets all day.

For the next six years he worked on the propagation of heat through solid bodies,
developing Fourier analysis and Fourier transforms in the process. His basic tenet,
that any repeating waveform could be expressed as a sum of a series of individual
sinusoids, was initially received with some scepticism, even hostility, among his
intellectual peers of that time. Indeed it was many years before the monumental and
ground-breaking nature of his work was fully appreciated. As an aside to this work
Fourier was the first to recognise and publicise the ‘greenhouse effect’.

Finally because of his lifelong obsession with heat, he tripped over his blankets,
fell down stairs, was put to bed and died a few days later. So be warned!

7.3 Chasing Rainbows—Frequency Spectra

Nowadays, rather than in heat propagation, the Fourier transform is used more often
in audio, radio and Radar as a convenient mechanism for converting time domain
signals into the frequency domain and, using the inverse transform, of converting the
frequency domain into the time domain. For instance in audio it allows the extraction
of the harmonic spectrum of a musical instrument playing a note.

Chapter 8
Bob Moog (1934 to 2005)

www.bobmoo 1 fatig

Copyright 2017, The Bob Moog Foundation

Seen here with two of his most famous instruments, the Moog Modular and the
Minimoog synthesisers, Dr. Robert ‘Bob’ Moog was an American pioneer in the
design of analogue synthesisers whose many innovations have become the indus-
try norm of today. From the early 1950s when he designed and built Theremins, a
unique instrument which you play only by moving your hands without touching it,
his developments included voltage controlled oscillators, filters and amplifiers, enve-
lope generators for controlling the musical dynamics and low frequency oscillators
for modulating the sound. All of these are expanded in the section on subtractive
synthesis.

© Springer International Publishing AG 2017 39
1. Gray, Snake Charming—The Musical Python,
DOI 10.1007/978-3-319-60660-6_8

40 8 Bob Moog (1934 to 2005)

8.1 Analogue Additive Synthesis

Although from the foregoing analysis in Chap. 7 it might appear that the obvious way
to synthesise an instrument playing a note is to sum together its constituent sinusoids
this met with several difficulties

1. percussive instruments have many inharmonic (non-integral) partials as in Chap. 5
which do not conform to standard Fourier analysis. A pealing bell, for example,
has eleven partials before it begins to sound realistic.

2. timbres of certain musical instruments, particularly the brass and string sections,
require a very large number of high harmonics to sound realistic.

Although both of these problems can be alleviated by the use of sophisticate digital
signal processing in the analogue world a different approach was required.

8.2 Analogue Subtractive Synthesis

Although the photograph at the beginning of the Chap. 8 seems a bit like an antiquated
telephone exchange there are really only three main modules, two supporting modules
and akeyboard to consider. A very good contemporary instrument is the Moog Sub 37

Copyright 2017, The Bob Moog Foundation

http://dx.doi.org/10.1007/978-3-319-60660-6_7
http://dx.doi.org/10.1007/978-3-319-60660-6_5
http://dx.doi.org/10.1007/978-3-319-60660-6_8

8.2 Analogue Subtractive Synthesis 41

The alternative approach taken was to use a small number, usually two or three,
harmonically rich waveforms, filter them to remove unwanted harmonics and finally
amplify them to produce the note. An envelope generator is used to add dynamics to
the output. Low frequency oscillators are used to modulate the three main modules
to give effects such as vibrato and tremolo. Finally a keyboard supplies the frequency
and duration of the note played.

8.2.1 Oscillators

ane

trangular

Only three of the waveforms depicted here, the sawtooth, square and triangle, are
used for oscillator output. All five are used for the low frequency oscillator in the
Modulation section. The input to an oscillator is a frequency in Hertz (Hz) which is
the number of complete repetitions of the waveform in a second. All the waveforms
and their spectra depicted below have a fundamental frequency of 100 Hz, and were
performed at a sample rate of 44.1 kHz.

The figures were all produced using Faber Acoustical’s SignalSuite and Sig-
nalScope software.

42 8 Bob Moog (1934 to 2005)

@e

006 Ee & @

©°
Qe
(=]}
L]
@
2
-]

Sawtooth oscillators have a full set of harmonics and are are particularly good at
forming the basis for the bright sounds of brasses or bowed strings.

8.2 Analogue Subtractive Synthesis 43

Y cee @ o @

ene
@e Q0e - KN @

Square wave oscillators have only odd numbered harmonics and are ideal as the
basis for clarinets. For oboes and beyond pulse width modulation must be performed
to transform the square into an increasingly rectangular waveform.

8 Bob Moog (1934 to 2005)

Y cee o @ o

a @

ene
@0 006 e o

i
I rti_[lm (TRFPAN

Triangle wave oscillators again have only odd numbered harmonics but these
decay at a far faster rate than they do in the square wave. They are most suited for
flute and thin reed sounds.

Notes to observant, and hopefully still interested, readers

1. the first waveform was a ramp rather than a sawtooth - mea culpa! However their
spectra are identical as there is only a phase-shift of 180 degrees between the
waveforms.

2. the spectral folding/aliasing at 22 kHz is an artefact of the Shannon/Nyquist

Sampling Theorem, and does not invalidate the spectral content being all, or odd
numbered, harmonics.

8.2 Analogue Subtractive Synthesis 45

8.2.2 Filters

A filter has a dramatic effect on the timbre of a note. It is most often a low pass filter
which attenuates frequencies sharply above its cutoff frequency, while leaving those
below unchanged. This affects whether the note sounds warm and dark or cold and
bright.

G ' Buttelrworthr G Chebysh'ev typfa 1

1.0 - 1.0 -
0.8} - 0.8 .
06} . 0.6 .
04 ks N 0.4 .
0.2} - [| EEREUCRIRt S]
0.0 : '- l 0.0 :

00 05 10,15 20 00 05 10_ 15 20
ff, ff,

G Chebyshev type 2 G Elliptic

0.0 0.5 1.0 1, 1.5 2.0 0.0 0.5 1.0 i, 1.5 2.0

The characteristics of the filters illustrated are

1. large attenuation of signals above the cutoff frequency
2. resonance or emphasis of signals about the cutoff frequency
3. filter slope (Q) indicating the rate of attenuation usually expressed in -dB V/octave

Note that the cutoff frequency is usually taken as the point when -3dBV attenuation
below the main flat response has occurred.

Butterworth filters will be used in the project code, with Chebyshev 1 used to
introduce resonance as in Chap. 14.

Other types of filters are used less commonly including high pass, band pass and
band stop filters which ‘do exactly as they say on the tin’. All pass filters do not
attenuate frequencies but cause a phase shift between input and output.

http://dx.doi.org/10.1007/978-3-319-60660-6_14

46 8 Bob Moog (1934 to 2005)
Filters are further classified by whether they involve feedback of the output into
the input as

1. Finite Impulse Response (FIR) filters have no feedback
2. Infinite Impulse Response (IIR) filters involve feedback

Most of the filters used here will be of the IIR type.

8.2.3 Amplifier

The amplifier controls the final output level of the sound which can be affected by
the envelope generators and modulators.

8.2.4 Envelope Generation

The overall dynamics, how the sound builds up and dies away, is controlled by an
amplifier envelope generator.

2 A, D R

f”"){.?_-“ RPN TEren eyt TAPIEREI] ISR e

Amplitude

04 e 4

pressed released

It traditionally has the four stages shown above

1. Attack phase—the time it takes to reach a maximum output level from the key
being pressed

2. Decay phase—the time it takes to fall to a sustain level

3. Sustain level—the volume the note is held at until the key is released

4. Release phase—the time to reach zero output level after the key is released

and is known as an amplitude ADSR envelope generator under the control of a key
on/off gate.

8.2 Analogue Subtractive Synthesis 47

8.2.5 Modulation

Modulation uses a low frequency oscillator in the infra-sonic range (0-30 Hz) to
modify waveforms in the three core modules. Any waveform in the oscillators section
can be used. For example using a sine waveform and targeting the

1. oscillator gives frequency modulation (FM)—vibrato
2. amplifier gives amplitude modulation (AM)—tremolo

Chapter 9
Project Code

This project will develop the core modules of an analogue subtractive synthesiser,
with audio monitoring of each module and enable you to

. change frequency and waveforms of the oscillators, and their mixtures

. change the cutoff frequency and filter slope of the low pass filter

. change the output volume of the amplifier

. change the attack, decay, sustain and release of the amplifier envelope generator
. change the rate and amount of the low frequency modulation

[O B R

Further time domain and frequency domain displays will be developed, using
Digital Signal Processing, to show respectively the waveform and spectral content
of the output from the oscillator, filter and amplifier.

9.1 New Language Features

Project Headers given in New Language Features are applicable only to this section.

9.1.1 Using Tkinter

The graphical user interface (GUI) of the synthesiser will be built from these widgets
within the ‘tkinter’ toolbox which is common across all platform. Insert the following
into the program header

© Springer International Publishing AG 2017 49
1. Gray, Snake Charming—The Musical Python,
DOI 10.1007/978-3-319-60660-6_9

50

AW N =

9 Project Code

from tkinter import *

from tkinter import ttk

from tkinter import colorchooser
root=Tk(()

Where these four lines establish

. tkinter as main package

. ttk (themed Tk) as the widget package available in Tcl/Tk 8.5 onward
. colorchooser package

. root as Tk root level

Within the root level GUI there will be frames supporting

1.

N AW N

the oscillators’ frequency and amount of pulse width modulation will be deter-
mined by list menus, and the mixture between them by mouse position within a
system colour chooser graphical element

. the filter’s cutoff and slope will be list menu items

. overall volume will be controlled by a slider

. ADSR settings on the amplitude envelope generator will be by sliders

. modulation rate and amount will be set by list menus, and its destination by a

radio box (off, vibrato or tremolo)

. displays for the oscillators’, filter’s and amplifier’s outputs will be controlled by

on/off check boxes

9.1.2 Project Header

You will need to use some features of NumPy, SciPy and Matplotlib for this project
so enter here

import numpy as np
import matplotlib.pyplot as plt

9.1.3 Sound Storage

Arrays from NumPy will be used to hold the numerical samples of the sound. These
will be turned into WAV files for input, output and offline processing of these sounds.
Add the following line to the project header

from scipy import io

9.1 New Language Features 51

9.1.4 Harmonic Analysis

The manipulation and display of the harmonic content of sounds requires the use of
the Fast Fourier Transform (FFT). Add the following line to the project header
from scipy import fft

9.1.5 Oscillators and Mixer

This section is long and repetitive because it provides the basis for sound generation
both here and in Chap. 13.

Insert the following Python test program saving it as ‘waves.py’

oscillators for mixing
import matplotlib.pyplot as plt
plt.plot([0O,17,[1,-1],'r-",[0,.5,11,[-1,1,-1], "b-",
[0,.51,1121,11,'g-",1.5,11,[-1,-11,"g-",linewidth=8)

plt.xlabel ('sample time’)
plt.ylabel (‘amplitude’)
plt.show()
samples of 1 second duration
from numpy import linspace, append
from scipy.io.wavfile import read, write
fregSamp=44100
fregNote=210
numRpts=fregSamp//fregNote
print (fregNote, numRpts)
test=linspace(1.0,-1.0,16,False) .astype(float)
print (test)
test2=append (test, test)
print (test2)
sawData=linspace(1.0,-1.0,numRpts, False) .astype(float)
rpts=fregNote-1
sawNote=sawData
while rpts>0:

sawNote=append (sawNote, sawData)

rpts=rpts-1
print (’sawtooth’, sawNote.shape)
write(’sawtooth.wav’, fregSamp, sawNote)
halfRpts=numRpts//2
firstHalf=1linspace(-1.0,1.0,halfRpts,False) .astype(float)
lastHalf=linspace(1.0,-1.0,halfRpts,False) .astype(float)

http://dx.doi.org/10.1007/978-3-319-60660-6_13

52 9 Project Code

triData=append(firstHalf, lastHalf)
rpts=fregNote-1
triNote=triData
while rpts>0:
triNote=append (triNote, triData)
rpts=rpts-1
print (’triangle’, triNote. shape)
write(’triangle.wav’, fregSamp, triNote)
firstHalf=1linspace(1.0,1.0,halfRpts,False) .astype(float)
lastHalf=linspace(-1.0,-1.0,halfRpts,False) .astype(float)
squData=append (firstHalf, lastHalf)
rpts=fregNote-1
squNote=squData
while rpts>0:
squNote=append (squNote, squData)
rpts=rpts-1
print (’square’, squNote.shape)
write(’square.wav’, fregSamp, squNote)
#mixing in pairs
sawtriNote= (sawNote+triNote) /2
print (’saw and tri’)
write(’sawtri.wav’, fregSamp, sawtriNote)
trisquNote= (triNote+squNote) /2
print(’tri and squ’)
write(’trisqu.wav’, fregSamp, trisqguNote)
squsawNote= (squNote+sawNote) /2
print (’squ and saw’)
write(’squsaw.wav’, fregSamp, squsawNote)
#mixing all three waveforms
sawtrisquNote= (sawNote+triNote+squNote) /3
print(’all three’)
write(’sawtrisqu.wav’, fregSamp, sawtrisquNote)
reading and mixing
(rate, saw) =read (’sawtooth.wav’)
(rate, squ)=read(’square.wav’)
(rate, tri)=read(’'triangle.wav’)
print (rate, saw)
print (rate, squ)
print (rate, tri)
print (’saw3squ2tril’)
mixNote=saw/2+squ/3+tri/6
write(’saw3squ2tril.wav’,6 rate,mixNote)

whose output is a single wave of the sawtooth(red), triangle(blue) and square(green)
oscillators for repeated storage in their respective *.wav’ files, and then output for
one second, then mixtures of two or three of these waveforms and finally reading
back the waveforms and mixing them in proportions.

The code is in five sections each headed by a highlighted comment.

The first section gives an example of a few pyplot commands to draw the oscilla-
tors” waveforms. plt . plot is followed by two arrays of x and y coordinates for the

9.1 New Language Features 53

line. If only one array is given it is assumed to be the y coordinates. The string follow-
ing gives the line’s colour and appearance and is optionally followed by parameters
describing for instance the line width. Because of the double buffering technique
described in Chap. 5 the output will only be displayed after the p1t . show () func-
tion call. This displays a single waveform of each of the three oscillators.

10

05 |

0.0 |

amplitude

00 02 04 0.6 08 10
sam pI e time

The second section constructs these waveforms repeating them fregNote times
and writing their output to *.wav’ files. There is no reason why the sampling frequency
fregSamp needs to be the same as the playback frequency but doing so avoids the
need for messy interpolation routines. The CD sampling frequency of 44100 Hz is
used, giving a Nyquist (Chap. 8) frequency of 22050 Hz just above the human hearing
range. 44100 = (2 -3 -5 - 7)? has 79 factors (see http://factornumber.com/?page=
44100) enabling a choice of integer factorisations for frequency with an even number
of repeats to allow construction of square and triangle waveforms. These frequencies
are

allowFregs=[22050,11025,7350,4410,3675,3150,2450,2205,

1575,1470,1225,1050,882,735,630,525,490,
450,441,350,315,294,245,225,210,180,175,
150,147,126,105,98,90,75,70,63,60,50,45,42,35,30]
thus covering the human range of frequencies of 30 Hz — 20 kHz. linspace
performs linear interpolation over a range for a number of points, where False says
not to include the endpoint. The variable test1 illustrates the operation. append
joins two arrays to form a longer array. The variable test 2 illustrates the operation.
The waveform is built by first forming a single copy using numRpts and appending

http://dx.doi.org/10.1007/978-3-319-60660-6_5
http://dx.doi.org/10.1007/978-3-319-60660-6_8
http://factornumber.com/?page=44100
http://factornumber.com/?page=44100

54 9 Project Code

fregNote copies to make an one second note. For square and triangle waveforms
the first stage must be performed as two half waveforms appended together. Finally
write puts these out to a “.wav’ file, at a rate of fregSamp using the constructed
waveform data. There is obviously a lot of repetition here which will be culled out
in the final code but as the Bellman says

“what I tell you three times is true”
Lewis Carroll, *The Hunting of the Snark’

Audacity displays of sawtooth, square and triangle waveforms are illustrated
below.

e b

The third section shows how to mix waveforms in pairs and normalise them before
writing them out. Audacity displays of mixtures of sawtooth and square, square and
triangle and sawtooth and triangle waveforms are illustrated below.

9.1 New Language Features 55

The fourth and fifth sections show an equal and a proportional mix of all three
waveforms and also how to read back a ‘.wav’ file. Audacity displays of an equal
and proportional mix are illustrated below, and demonstrate the variety of timbres
achievable purely by mixing alone.

= ;} &_'.-‘:"_. TR R I

9.1.6 Low Pass Filtering

Filters are used to remove unwanted parts of a signal such as high harmonics leaving
the rest of the signal untouched. A filter taking an average over a series of time steps

56 9 Project Code

provides the basis of a low pass filter. This can be of two forms, where x(n) and y(n)
are the input and output at time n respectively.

1. Finite Impulse Response (FIR) where the output is purely a function of the
input. A simple example is a moving window average filter such as y(n) =
§ g x(n—i)

2. Infinite Impulse Response (IIR) is a function of the input and feedback of
previous values of the output. A simple example is an alpha filter y(n) =
a-x(n)+ 1 —a)-yn—1)

Insert the following Python test program saving it as ‘alpha.py’

reading samples of 1 second duration

from numpy import linspace

from scipy.io.wavfile import read, write

(fregSamp, sawwav) =read (' sawtooth.wav’)

(fregSamp, squwav) =read (’'square.wav’)

(fregSamp, triwav)=read(’triangle.wav’)

initialising filter

sawflt=1linspace(0.0,0.0, fregSamp,False) .astype(float)

squflt=linspace(0.0,0.0, fregSamp,False) .astype(float)

triflt=1linspace(0.0,0.0, fregSamp,False) .astype(float)

alpha=1/20

sawflt[0]=alpha*sawwav[0]

squflt[0]=alpha*squwav[0]

triflt[0]=alpha*triwav[0]

#alpha filter

for flt in range (1, fregSamp) :
sawflt[flt]=alpha*sawwav[flt]+ (l-alpha) *sawflt[flt-1]
squflt[flt]=alpha*squwav[flt]+(l-alpha)*squflt[flt-1]
triflt[flt]=alpha*triwav([flt]+(l-alpha)*triflt[flt-1]

#writing filtered samples

write(’sawflt.wav’, fregSamp, sawflt)

write(’squflt.wav’, fregSamp, squflt)
write(’triflt.wav’, fregSamp, triflt)
print (’saw’, sawwav)
print (’flt’,sawflt)
print (’squ’, squwav)
print(’flt’,squflt)
print(’t , triwav)
print (' f ,triflt)

The code is in four sections each headed by a highlighted comment.

The first section reads in unmixed copies of the original three oscillators.

The second section allocates array space for the filtered outputs, sets alpha for the
filter and sets the initial output by assuming y(-1)=0.

The third section is the alpha filter, y(n) = o - x(n) + (1 —) - y(n — 1) itself.

The final section writes out the filtered values printing them for comparison pur-
poses. Although the alpha filter is a blunt instrument for performing keyhole surgery,

9.1 New Language Features 57

it has ‘rounded off’ the sharp corners in the sawtooth, square and triangle waveforms
shown below. The filter cutoff is about 6000 Hz as shown in the triangle spectrum.
This combined effect gives a sound which is mellower, warmer and darker than the
original. More refined filters within the package scipy.signal will be used in
the final code.

=17 T e T T = A P T L T
opnnnn Usit s OEAD OOl fe ik T
b b » i — i G D O I

T Caatat P Serumanne (3 2 3 (s T W MOt O 2
amm ae eve omm ome & 0 o180

B6Hz Al 1 18000Hz
Cursor: 12775 Mz (09 = -103 &8 Peak: 12806 Hz (09) = -100.3 08

Migorithe: Spectrum i Sk 512 2 Ewport. Aepiot_
Function: Hanning window < Mg Linearfequency S Orids Close

9.1.7 Implement Butterworth Low Pass Filter

As an example of the finer control possible implement a twelfth order Butterworth
filter with a cutoff of 5000 Hz, saving it as ‘butter.py’

calculate Butterworth Low-pass coordinates

import numpy as np

from numpy import zeros

from scipy.io.wavfile import read, write

from scipy.signal import butter, 1lfilter, l1lfilter_zi

(fregSamp, triwav) =read(’triangle.wav’)

initialising filter

tribut=zeros (fregSamp)

order=12

cutof£=5000

Nygquist=fregSamp/2

58 9 Project Code

Wn=cutoff/Nyquist

(b,a)=butter (order,Wn)

zi=1lfilter zi(b,a)

applying filter

(tribut,_)=1filter (b, a, triwav,zi=zi*triwav[0])
#writing filtered samples

write(’tribut.wav’, fregSamp, tribut)

Where the five highlights are

1. the Nyquist frequency is half the sampling rate, see Chap. 8

2. for a digital filter the normalisation is [0, 1] where 1 is the Nyquist frequency

3. the Butterworth design returns a tuple of the numerator (b) and denominator (a)
polynomials of the IIR filter, see Chap. 8

4. computes the initial state for the filter

5. executes the fitter for the given design and initial conditions

the last three stages need to be performed for each new filter type such as

scipy.signal.chebyl.
The Audacity spectrum for this filter exhibits a sharp ’shoulder’ at the cutoff and

should be compared with that from the alpha filter above.

P
P
10000Hz 15000Hz 18000Hz 22011Hz
Cursor: 10529 Hz (E9) = -136 dB Peak: 10723 Hz (E9) = -137.1 dB
Algorithm: Spectrum % Size: 512 v Export... Replot...
Function: Hanning window % Axis: Linear frequency S Grids Close

9.1.8 Amplitude Envelope Generation

The dynamics of an instrument’s sound over time are controlled by the amplitude
envelope generator.

http://dx.doi.org/10.1007/978-3-319-60660-6_8
http://dx.doi.org/10.1007/978-3-319-60660-6_8

9.1 New Language Features 59

Insert the following Python test program saving it as ‘ADSR.py’

reading samples of 1 second duration
from math import *

from numpy import linspace, append

from scipy.io.wavfile import read, write
(fregSamp, sawwav) =read (’'sawflt.wav’)
(fregSamp, squwav) =read (’'squflt.wav’)
(fregSamp, triwav)=read(’'triflt.wav’)
onems=fregSamp/1000

ADSR envelope

attack=floor (50 * onems)

decay=floor (25 * onems)

release=floor (150 * onems)

sustain=0.65

susDur=fregSamp- (attack+decay+release)

#4 linspace for envelope
A=linspace(0,1,attack,False) .astype(float)
D=linspace(l,sustain,decay,False) .astype(float)
S=linspace(sustain, sustain, susDur,False) .astype(float)
R=linspace(sustain, 0, release,False) .astype(float)
AD=append (A, D)

ADS=append (AD, S)

ADSR=append (ADS,R)

print (ADSR, ADSR.shape, type (ADSR))

print (sawwav, sawwav.shape, type (sawwav))
saweng=ADSR*sawwav

print (saweng, saweng.shape, type (saweng))
squeng=ADSR*squwav

trieng=ADSR*triwav
write(’saweng.wav’,6 fregSamp, saweng)
write(’squeng.wav’,6 fregSamp, squeng)
write(’trieng.wav’, fregSamp, trieng)

The code is in three sections each headed by a highlighted comment.

The first section reads in the filtered versions of the unmixed oscillators, and sets
a time standard of one milli-second.

The second section sets the durations of each envelope component and the output
sustained level.

The third section uses 1inspace to interpolate the four parts of the envelope
which are then joined using append. This envelope is then multiplied by the wave-
form to account for both positive and negative segments. The output files are shown
below for filtered sawtooth, square and triangle waveforms.

60 9 Project Code

9.1.9 Low Frequency Oscillator and Modulation

A Low Frequency Oscillator (LFO) operates at infra-sonic frequencies (0 Hz —
30 Hz) to produce a signal to modulate one of the three main modules, the Voltage
Control Oscillator, Filter and Amplifier (VCO, VCF and VCA). With a frequency
sampling rate of 44100 Hz any of the following frequencies in Hz are allowed
allowMods=[30,25,21,18,15,14,10,9,7,6,5,3,2,1]
Insert the following Python test program saving it as ’sinemod.py’

generate 5Hz sine wave

from math import *

from numpy import append, empty

from scipy.io.wavfile import read, write
fregSamp=44100

fregNote=5

sampInt=fregSamp//fregNote
sampSine=empty (sampInt) .astype(float)
print (sampSine, sampSine.shape, type (sampSine))
twopi=2*pi

sampSine[0]=0.0

9.1 New Language Features 61

time=1
while time<sampInt:
sampSine[time]=sin (twopi*time/sampInt)
time=time+1
print (sampSine)
sineWav=sampSine
cnt=fregNote-1
while cnt>0:
sineWav=append (sineWav, sampSine)
cnt=cnt-1
write(’sine.wav’, fregSamp, sineWav)
amount=0.5
mod=sineWav*amount
tremolo
(rate, trieng)=read(’'trieng.wav’)
write(’tritrem.wav’,rate, trieng* (1+mod))

The code is in two sections each headed by a highlighted comment.

The first section proceeds as before for assembling waveforms, except that
linspace is not used and the sine wave is interpolated manually. Other modu-
lating waveforms in Chap. 8, sawtooth, ramp, square and triangle, can all be made
with 1inspace as above.

The second section applies Amplitude Modulation (AM) to the VCA to produce
tremolo. Frequency Modulation (FM) on the VCO will be discussed in Chap. 14.

The illustrations are of the 5 Hz sine wave and tremolo applied to the filtered and
envelope triangle wave.

A | A O e e e
SRR LRI AAT] Ll LIRS e - i

b ¢ [mim[u e

9.1.10 Analysis Displays

The analysis displays will allow showing a single waveform (in the time domain),
and its harmonic, spectral content (in the frequency domain).
Insert the following Python test program saving it as ‘display.py’.

http://dx.doi.org/10.1007/978-3-319-60660-6_8
http://dx.doi.org/10.1007/978-3-319-60660-6_14

62

9 Project Code

time and frequency displays

from math import *

import numpy as np

from scipy.io.wavfile import read
from scipy.fftpack import rfft
import matplotlib.pyplot as plt
fileName='sawflt.wav’
(fregSamp,wavData) =read (fileName)
fregNote=210

print (fregSamp,wavData)

plt.ion()

plt.figure (1)
plt.suptitle(fileName, fontsize=18)
plt.subplot (211)

plt.plot (wavData[0: fregNote])
plt.subplot(212)

plt.semilogx ()

plt.plot (abs (rfft (wavData))/32768)

The code is straightforward but several important new concepts are highlighted.

These are

1.

scipy. fftpack contains functions which perform the Discrete Fourier
Transform from the time domain to the frequency domain efficiently. This trans-
formation uses Fast Fourier Transforms (FFT).

. plt.ion setsup interactive graphics on typing $matplotlib in the [Python

window.

. the next three lines set up multiple subplots within a figure.
. the next line draws a single waveform using an array slice.
. the final two lines produce the frequency display using a real FFT scaled to [0,1].

The final display, with interactive controls for panning and zooming, looks like

9.1 New Language Features 63

[BN Figure 1

sawflt.wav

250
0.10
0.05 ‘ |
0.00 R _— ™ viy
10° 10’ 10° 10° 10* 10°

noo+« @®

9.1.11 Graphical User Interface

The widgets from tkinter that will form the GUI will be

Overall six Frames to contain each major unit in synthesiser
Overall a Button to start the program when all user entries,
including default values, are completed
Oscillator frame containing a Combobox to allow selection of frequen-
cies from a list and a mixer Button calling up a color-
chooser to mix the three different oscillators
Filter frame two Radiobuttons will allow selection of the filter’s
order and cutoff frequency
Amplifier frame a Radiobutton to select output volume level

Envelope Generator frame four Entry boxes allowing the input of ADSR values in
msec and %

Display and Storage frame a Radiobutton allowing a choice of VCO, VCF or VCA
outputs to be displayed, and an Entry for specifying
sound storage file

LFO frame a Combobox to choose the modulation frequency and
a Radiobutton to select its depth

64 9 Project Code

9.1.12 GUI Support for Mixer Button

The Mixer will be called from a Button within the VCO Frame. Type into ‘mixer.py’
from tkinter import *
from tkinter import ttk
from tkinter.colorchooser import *
def getColor():

((red, green,blue), color) = askcolor()
print (’sawtooth = ', red)
print(’square = ', green)
print(’triangle = ', blue)
print(‘color = ’, color)
return color
root=Tk ()
ttk.Button (root, text='Mixer’, command=getColor).

pack()

root.mainloop ()

where colour is handled as a nested tuple. Note that the program is contained in
aroot.mainloop () GUI event loop it must be stopped by quitting Spyder.

The mixer Button will call up this palette for mixing sawtooth(red), triangle(blue)
and square(green) oscillators in proportions. The displays are illustrated from the
Macintosh.

(=] Colors
Oy o
RGB Sliders #*
Red
265
Green
[255
Blue
255

Hex Color # FFFFFF

Cancel m Cancel

9.2 The Code 65

9.2 The Code

The project Python code is thus a composite of the above subsections, with suitable
modifications to accommodate the GUI. Individual sections will be encapsulated in
functions, with sound file data being the parameter mainly used between them. It
develops the three major functional units, of the synthesiser, VCO, VCF and VCA,
and two supplementary units AEG and LFO, along with displays and sound storage
functions.

9.2.1 Project Header

Type into ‘main3.py’
from math import *
import numpy as np
import scipy.io.wavfile as io
import scipy.signal as sig
import scipy.fftpack as fft
import matplotlib.pyplot as plt
from tkinter import *
from tkinter import ttk
import tkinter.colorchooser as col
fregSamp = 44100

9.2.2 Oscillator and Mixer

Within the VCO the oscillators , sawtooth, square and triangle, provide the sound
generation functions, which the mixer the mixer combines into a single piece of
sound data for further processing.

Inputs frequency of note, oscillator mixture
Output sound data for mixed oscillators

Type into ‘main3.py’
oscillators and mixer
def VCO(fregNote=441,mix=0x7F7F7F) :
def oscillators():
def Saw():
numRpts=fregSamp//fregNote
sawData=np.linspace(1.0,-1.0,numRpts,False) .astype(float)
rpts=fregNote-1
sawNote=sawData
while rpts>0:
sawNote=np.append (sawNote, sawData)
rpts=rpts-1
return sawNote

66 9 Project Code

def SquTri():
halfRpts=fregSamp// (2*fregNote)
firstHalf=np.linspace(1.0,1.0,halfRpts,False) .astype(float)
lastHalf=np.linspace(-1.0,-1.0,halfRpts,False) .astype(float)
squData=np.append (firstHalf, lastHalf)
firstHalf=np.linspace(-1.0,1.0,halfRpts,False) .astype(float))
lastHalf=np.linspace(1.0,-1.0,halfRpts,False).astype(float)
triData=np.append(firstHalf, lastHalf)
rpts=fregNote-1
squNote=squData
triNote=triData
while rpts>0:
squNote=np.append (squNote, squData)
triNote=np.append (triNote, triData)
rpts=rpts-1
return (squNote, triNote)
sawNote=Saw ()
(squNote, triNote) =SquTri ()
return (sawNote, squNote, triNote)
def mixer (oscs):
(saw, squ, tri)=oscs
blue=mix%256
green=(mix//256) %256
red=(mix//65536)
norm=red+green+blue
return (red*saw+green*squ+blue*tri) /norm

return mixer (oscillators())

9.2.3 Filter

The VCF is the principal sound shaper within the synthesiser attenuating frequencies
above the cutoff at a rate dependent on the order of the filter.

Inputs sound data, cutoff frequency and order of Butterworth filter
Output filtered sound data

Type into ‘main3.py’

filter

def VCF (soundData,cutoff=5000, order=4) :

#initialising filter
buffer=np.zeros (fregSamp)
Nyquist=fregSamp/2
Wn=cutoff/Nyquist
(b,a)=sig.butter (order,Wn)
zi=sig.lfilter_=zi(b,a)

applying filter
(buffer,_)=sig.lfilter (b,a, soundData, zi=zi*soundDatal[0])
return buffer

9.2 The Code 67

9.2.4 Amplitude Envelope Generator

The AEG controls the overall dynamics of the synthesiser sound dependent on an
envelope.

Inputs sound data, values for Attack, Decay, Sustain and Release
Output dynamically shaped sound data

Type into ‘main3.py’

amplitude envelope generator

def AEG (soundData,envelope=(10,10,0.5,10)):
onems=fregSamp/1000

ADSR envelope
(att,dec, sus, rel)=envelope
attack=floor (att * onems)
decay=floor (dec * onems)
sustain=sus
release=floor (rel * onems)
susDur=fregSamp- (attack+decay+release)

#4 linspace for envelope
A=np.linspace(0,1,attack,False) .astype(float)
D=np.linspace(l, sustain,decay,False) .astype(float)
S=np.linspace(sustain, sustain, susDur, False) .astype(float)
R=np.linspace(sustain, 0, release,False) .astype(float)
AD=np.append (A,D)

ADS=np.append (AD, S)
ADSR=np.append (ADS,R)

return ADSR*soundData

9.2.5 Modulator

The Low Frequency Oscillator (LFO) allows modulation of the sound by a low
frequency waveform.

Inputs sound data, LFO frequency and depth
Output modulated sound data

Type into ‘main3.py’

LFO modulation

def LFO (soundData,LFOrate=5,depth=0.5):
sampInt=fregSamp//LFOrate
sampSine=np.empty (sampInt) .astype(float)
twopi=2*np.pi
sampSine[0]=0.0
time=1
while time<sampInt:

sampSine[time]=np.sin(twopi*time/sampInt)

68 9 Project Code

time=time+1
can be replaced by two calls to np.linspace
sineWav=sampSine
cnt=LFOrate-1
while cnt>0:
sineWav=np.append (sineWav, sampSine)
cnt=cnt-1
mod=sineWav*depth
tremolo
return soundData* (1+mod)

9.2.6 Amplifier

The VCA controls the overall volume of the sound output.

Inputs sound data, volume level
Output amplified sound data

Type into ‘main3.py’
#amplifier
def VCA (soundData,volume=1):
return soundData*volume

9.2.7 Displays and Output

Time (in number of samples) and frequency (in Hz(displays can be generated from
the sound data from the VCO, VCF or VCA and this sound data then stored in a file.

Inputs sound data, output file
Output None

Type into ‘main3.py’

display and output

def display(soundData, fileName='out’) :
plt.ion()
plt.figure (1)
plt.subplot(211)
plt.plot (wavData[0:fregSamp])
plt.title(’'time’)
plt.grid()
plt.subplot(212)
plt.semilogx ()
plt.title(’'freq’)

9.2 The Code 69

plt.grid()
plt.plot(abs(fft.rfft(wavData))/32768)
io.write(fileName+’ .wav’, fregSamp, soundData)
return None

9.2.8 User Interface

The full synthesiser works with just calling the above functions in a nested fashion
as in

display (VCA (LFO (AEG (VCF(VCO()))))

with or without default parameter values. display can be inserted before VCO,
VCF or VCA depending on the output to be monitored. A full GUI requires the widgets
described above plus the mixer GUI support function.

Using the default values and %matplotlib in the ipython console results in

e Figure 1

time

ooob—e e enid g
10° 10! 10?

00 + & &

where enlarging the foot of each main spectral line shows the effect of the 5 Hz
LFO modulation, and is probably also an artefact of performing a real FFT without
a window function. The different height of the harmonics (spectral lines) reflect the
mixture of sawtooth, square and triangle waveforms.

What you can then do is mix different combinations and multiples of VCF, AEG
and LFO in any order, between the VCA and VCO outermost functions. This gives
the sound producing capabilities of the Moog Modular synthesisers of the 1960s. All
this from very simple synthesis functions!

10°

Part IV
The Harmonograph—Victorian
Pendulum Toy

Chapter 10
Hugh Blackburn (1823 to 1909)

Hugh Blackburn, seen here in caricature, was Professor of Mathematics at Glasgow
University for thirty years from 1849 to 1879. Whilst an undergraduate at Cambridge
he designed a form of double pendulum, described in section below, which bears his
name. This device was used to investigate harmonic intervals.

© Springer International Publishing AG 2017 73
1. Gray, Snake Charming—The Musical Python,
DOI 10.1007/978-3-319-60660-6_10

74 10 Hugh Blackburn (1823 to 1909)

10.1 Motion of a Damped Pendulum

This section which is more mathematically challenging may be safely skipped, at
least on first reading, without losing the theme of this chapter.
A simple pendulum, without friction, is a simple harmonic oscillator and so obeys,

to a small angle approximation, the second order differential equation % + § -0 =

0, where € is the angular displacement of the pendulum, / the pendulum’s length and g
is gravitational acceleration. This gives a period for the pendulumof 7o =2 - 7 - \/g

by Huygen’s law. This correspondence between length and period is illustrated by a
device called the Pendulum Wave, in which fourteen pendulums of increasing length
are displaced by the same amount then released, resulting in

20000080008 444¢

This also illustrates the fundamental trigonometric nature of the solution to the dif-
ferential equation 6(r) = 6 - cos(\/% - t). Finally to account for damping caused by

friction, at the pivot and air resistance, simply multiply this solution by a decreasing
function of time such as exp(—d - t), where d is a damping factor.

10.2 Blackburn’s Double Pendulum

10.2 Blackburn’s Double Pendulum

[‘7.11"".'."'-.I‘.[[."IE!‘.‘TIE‘:‘.'W'.’.iil."irllll,'.'[.. I :

T [m

Blackburn’s double pendulum, from Sound by John Tyndall, 1879.

75

Blackburn’s double pendulum is Y shaped. The top part, the arms of the Y, is
generally made of a solid piece of wood, and pivoted so that it can only move in
one axis. The bottom part, the stem of the Y, is attached to the upper part with some
flexible material, like rope, allowing it the freedom to move in both axes. Attached
to this lower part was a container of sand or ink to record the evolving patterns of

the harmonic ratios.

76 10 Hugh Blackburn (1823 to 1909)

The major problem with this design is that the pendulum must be physically very
large to record the finer pattern details caused by the decay of the pendulum motion.
As an example see the twelve foot Blackburn pendulum built by Paul Wainwright in
his barn, Please see book backmatter.

10.3 Harmonic Ratios—The Lateral Harmonograph

Clearly it was quite impractical to carry around a twelve foot Blackburn pendulum
to Victorian drawing rooms, to entertain the other guests after a dinner party! The
solution came in the form of a lateral harmonograph small enough to pack in a
wooden carrying case. As well as legs to support the wooden case as a table, it had
two metal pendulums with movable bobs. The pendulums were fitted in two gimbals
at right angles to each other, thus ensuring orthogonal motion. One pendulum held
a drawing surface and the other a recording pen. The bobs could be moved relative
to each other to establish different harmonic ratios.

The illustrations below are respectively of a beat note, and a perfect fifth inter-
val, and were made using Francis McConville’s spreadsheet simulation of a lateral
harmonograph, Please see book backmatter. This site also contains illustrations of
lateral harmonographs.

10.4 Parallels—Bowditch and Lissajous

It is almost a truism in science that the same idea is worked on independently by
different people simultaneously, witness Newton and Leibniz on differential calculus.
In the case of harmonic analysis Nathaniel Bowditch, the father of ocean navigation,
in work later refined by Jules-Antoine Lissajous, worked on this study independently
of Hugh Blackburn.

10.4 Parallels—Bowditch and Lissajous 71

Nowadays, when the appearance of Lissajous’ curves of harmonic ratios is familiar
from oscilloscope screens it is very revealing to see his apparatus from nearly a
century before such displays became commonplace. Two tuning forks were mounted
at right angles to each other with each bearing a mirror on one of their arms. This
arrangement then focussed light on to a telescope through which the curves could be
observed.

0° 45° 90°

78 10 Hugh Blackburn (1823 to 1909)

10.5 Of Gears and Motors—The Pintograph

Instead of varying pendulum length, by moving bobs, to set up the ratios for harmonic
intervals, pintographs do this purely mechanically. This can either be through setting
up gear ratios or varying stepper motor speeds. Resulting in their drawings being
related to, but not identical to, the equivalent harmonograph drawings.

The pintograph illustrated below is the PrimoGraf from LEAFpdx, Please see book
backmatter. It consists of seven co-prime gears which can be set up in pairs or triples
to achieve different ratios. It is then cranked manually.

ie:

L8N \\‘

= -
\.\‘

Joe Freedman, www.sarabande.com
The beat note illustrated below, with gear ratios 40:39:41, should be compared
with that from the lateral harmonograph.

Py - =

Joe Freedman, www.sarabande.com

www.sarabande.com
www.sarabande.com

Chapter 11
Project Code

This project will develop an animation of a lateral harmonograph where you can
specify the harmonic ratios to be plotted. The various stages involved are

1. Plotting Lissajous’ figures

2. Plotting two orthogonal damped pendulums

3. adding user interface control over harmonic ratios, expressed as rational numbers,
to be plotted

11.1 New Language Features

Project Headers given in New Language Features are applicable only to this section.

11.1.1 Lissajous’ Figures

Lissajous’ curves are specified by the pair of parametric equations
x(t)=A-sin(a-t+ ¢)and y(t) = B - sin(b - t) where

1. tistime

2. A and B are amplitudes taken as unity here

3. aand b are frequencies, a/b giving their harmonic ratio
4. ¢ is the phase offset between the two sinusoids

© Springer International Publishing AG 2017 79
1. Gray, Snake Charming—The Musical Python,
DOI 10.1007/978-3-319-60660-6_11

80 11 Project Code
11.1.1.1 Just Temperament Intervals

Just temperament is used here, instead of Equal temperament (where all semitones
are V/2), as all the intervals can be expressed as rational numbers with integral
numerators and denominators. These intervals are

. Unison, ratio 1:1

. Octave, ratio 2:1

. Perfect Fifth, ratio 3:2

. Perfect Fourth, ratio 4:3
. Major Third, ratio 5:4

. Minor Third, ratio 6:5

. Major Tone, ratio 9:8

. Minor Tone, ratio 10:9
. Semitone, ratio 16:15

O 0 1 O\ L A~ Wi —

Enter the following test program into Python saving it as ‘liss,py’.

import numpy as np
import matplotlib.pyplot as plt
def lissajous(t,a,b,phi):
xt=np.sin(a*t+phi)
vt=np.sin(b*t)
return xt,yt
print(lissajous(1,4,3,np.pi/6))
size=int (np.pi*20000)
XS,ys=np.zeros (size) ,np.zeros (size)
a,b,phi=4,3,np.pi/3
for index in range(size):
(xs[index],ys[index])=1lissajous (index/10000,a,b,phi)
print(xs,ys)
plt.ion()
plt.plot(xs,ys)

The first highlight makes the program iterate over 2 - 7 cycles, while the second
highlighted for loop can of course be substituted by a 1 inspace function. For a
Perfect Fourth interval (4:3) the output should look like (after %maplotlib in IPython).

11.1 New Language Features 81
[NN) Figure 1

1.0

0.5

0.0

-1.0
-1.0 -0.5 0.0 05 1.0

00+ &\

11.1.2 Damped Orthogonal Pendulums

Enter the following test program into Python saving it as ‘damp.py’

harmonograph with damping factor 1/100

import numpy as np

import matplotlib.pyplot as plt

def damped(t,a,b,phi):
xt=np.sin(a*t+phi) *np.exp(-t/100)
vt=np.sin(b*t)*np.exp(-t/100)
return xt,yt

size=int (np.pi*2000000)

XS,ys=np.zeros(size),np.zeros(size)

a,b,phi=2,3,np.pi

for index in range(size):
(xs[index],ys[index])=damped (index/10000,a,b,phi)

print (xs,ys)

plt.ion()

plt.plot(xs,ys)

The first two highlights multiply by the damping factor,while the third highlight
iterates over 200 - 7 cycles. The diagram shows a harmonograph of a perfect fifth
(after %omaplotlib in IPython).

82 11 Project Code

[NN) Figure 1

»O0 0+ |

11.1.3 Harmonic Ratios as Fractions

Python expresses rational numbers in the module fractions. Enter the following
test program into Python saving it as ‘ratio.py’

harmonic ratios as fractions

from fractions import Fraction

unison=Fraction(1l,1)

octave=Fraction(2,1)

perfect5th=Fraction(3,2)

perfectd4th=Fraction(4,3)

major3rd=Fraction (5, 4)

minor3rd=Fraction(6,5)

majortone=Fraction (9, 8)

minortone=Fraction(10,9)

semitone=Fraction(16,15)

print (unison, octave,perfectbth,perfectdth,major3rd,
minor3rd,majortone, minortone, semitone)

print (perfect5th.numerator,perfect5th.denominator)

Where Fractionisthe constructor function,numerator and denominator
the accessor functions for Rational numbers.

11.1 New Language Features 83

11.1.4 User Interface

The widgets from tkinter that will form the GUI will be

Overall a single Frame to contain remaining widgets
Overall a Button to start the program when all user entries, including default
values, are completed
Intervals a Combobox will allow selection of harmonic interval
Phase a Combobox will allow selection of phase offset between the two sinusoids
Plot type a Combobox will allow damping on or off to be chosen

11.1.5 Project Header

You will need to use some features of NumPy and Matplotlib for this project so enter
here

import numpy as np
import matplotlib.pyplot as plt

11.2 The Code

The project Python code is thus a composite of the above subsections, with suitable
modifications to accommodate the GUI.

11.2.1 Project Header

Type into ‘main4.py’

from math import *

from fractions import Fraction
import numpy as np

import matplotlib.pyplot as plt
from tkinter import *

from tkinter import ttk

84

11 Project Code

11.2.2 Orthogonal Polynomials

Two different pairs of orthogonal pendulums are defined

1. Lissajous an idealised system, without friction, where the pendulums move at a
harmonic ratio and phase shift with respect to each other

2. Harmonograph a realistic system, with frictional damping, where the pendulums
move at a harmonic ratio and phase shift with respect to each other

Inputs harmonic ratio as a fraction, phase shift in degrees, friction as Boolean
Output None

Type into ‘main4.py’

def orthogonal (ratio=Fraction(2,3),phase=90, friction=False) :

def

def

undamped (a, b, phi) :
def lissajous(t):
xt=np.sin(a*t)
vt=np.sin (b*t+phi)
return xt,yt
size=int (np.pi*20000)
XS,ys=np.zeros (size) ,np.zeros(size)
for index in range(size):
(xs[index],ys[index])=1lissajous (index/10000)
return (xs,ys)
damped (a,b,phi) :
def harmonograph(t) :
xt=np.sin(a*t) *np.exp(-t/100)
vt=np.sin(b*t+phi) *np.exp (-t/100)
return xt,yt
size=int (np.pi*200000)
XS,ys=np.zeros(size),np.zeros (size)
for index in range(size):
(xs[index],ys[index])=harmonograph (index/10000)
return (xs,ys)

a,b,phi=ratio.numerator,ratio.denominator,phase*np.pi/180

(xs,

vs)=damped(a,b,phi) if friction else undamped(a,b,phi)

plt.ion()
plt.figure(l)
plt.plot(xs,ys)
return None

11.2 The Code

11.2.3 User Interface

A simple GUI is developed to fill in the entries for the pendulums

Interval is unison
Phase is 0
Display type Lissajous

Push when ready Blast off!

for more sophisticated GUIs see Chapter 15.

for more sophisticated GUIs see Appendix A.
Type into ‘main4.py’

def getInterval (*args):
intervalStr=interval.get ()
if intervalStr==‘unison’:
intervalValue=Fraction(1,1)
elif intervalStr==‘octave’:
intervalValue=Fraction (1, 2)
elif intervalStr==‘perfect fifth’:
intervalValue=Fraction (2, 3)
elif intervalStr==‘perfect fourth’:
intervalValue=Fraction(3,4)
elif intervalStr==‘major third’:
intervalValue=Fraction (4,5)
elif intervalStr==‘minor third’:
intervalValue=Fraction (5, 6)
elif intervalStr==‘tone’:
intervalValue=Fraction(8,9)
else:
intervalValue=Fraction(9,10)
return intervalValue
def getPhase(*args) :
phaseValue=float (phase.get())
return phaseValue
def getDisplay(*args) :
displayStr=display.get ()
displayValue=(displayStr=="'Harmonograph’)
return displayValueh
def start(*args):
i=getInterval ()
p=getPhase ()

AW N =

11 Project Code

f=getDisplay ()

orthogonal (i,p,)

return None
root=Tk ()
root.title('Pendulums’)
frame=ttk.Frame (root,padding=10,borderwidth=10,relief="raised’)
frame.grid(column=0, row=0,sticky=(N,W,E, S))
ttk.Label (frame, text="Interval is’).grid(column=1,row=1)
ttk.Label (frame, text="Phase is’) .grid(column=1, row=2)
ttk.Label (frame, text="Display type’).grid(column=1,row=3)
ttk.Label (frame, text="Push when ready’).grid(column=1, row=4)
intervalVar=StringVar ()
intervalList=[‘unison’, ‘octave’, ‘perfect fifth’,

‘perfect fourth’, ‘major third’,
‘minor third’, ‘tone’, ‘semitone’]
interval[‘values’]=intervallList

interval.set (‘unison’)
interval.bind('<<ComboboxSelected>>"',6 getInterval)
interval.grid(column=2, row=1)

phaseVar=StringVar ()

phaseList=['0", ‘15’, '30’, '45’, '60’, ‘75’, ‘90']
phase=ttk.Combobox (frame, textvariable=phaseVar)
phase[‘'values’]=phaselList

phase.set ('0")

phase.bind ('<<ComboboxSelected>>"', getPhase)
phase.grid(column=2, row=2)

displayVar=StringVar ()

displayList=[‘Lissajous’, ‘Harmonograph’]
display=ttk.Combobox (frame, textvariable=displayVar)
displayl[‘values’]=displayList
display.set(‘'Lissajous’)
display.bind('<<ComboboxSelected>>"', getDisplay)
display.grid(column=2, row=3)
btn=ttk.Button (frame, text="Blast off!’, command=start)
btn.grid(column=2, row=4)

root.mainloop ()

Although this is a relatively simple GUI it illustrates the main features

. different types of widget

. grid geometry manager

. bindings and control callback on events
. the event loop

This GUI must be extended with a canvas widget to allow drawing, see Chap. 14.

http://dx.doi.org/10.1007/978-3-319-60660-6_14

Part V
Counterpoint a la Mode—Composing
Music

Chapter 12
Johann Joseph Fux (1660 to 1741)

Fux was a prolific Austrian composer of the early Baroque period, however it is
mainly for his music theoretical works on harmony and counterpoint that he is remem-
bered today. This work covered tonal music from the 17th to late 19th centuries, the
era of Common Practice. However, as will be shown, this can be adapted to cover
modern jazz and rock genres in the Extended Common Practice.

© Springer International Publishing AG 2017 89
1. Gray, Snake Charming—The Musical Python,
DOI 10.1007/978-3-319-60660-6_12

90 12 Johann Joseph Fux (1660 to 1741)

12.1 Gradus Ad Parnassum—Counterpoint

Fux’s masterpiece Gradus ad Parnassum, steps to Parnassus, was originally published
in 1725 and has remained in print ever since. Written in Latin, the Lingua Franca of
its day, it consists of two parts

1. The Theory—covers intervals as a mathematical exercise, consonances, motions
and rules for motion between intervals.

2. The Dialogue—between the master Aloysius (Palestrina) and his student Jose-
phus (Fux) consisting of a dozen didactic problems per species. These problems
cover prescribed cantus firmus above and below the accompanying melody line,
in each of the permissible modes, and can be considered the Baroque equivalent
of cryptic crossword puzzles.

The book was known to have been greatly admired by J.S.Bach, and that composers
like Mozart and Beethoven, who worked out all the exercises, then influenced the
whole of tonal music through its teachings.

12.1.1 Melody—Direct, Contrary and Oblique Motion

Motion can be considered the horizontal (temporal) aspect of the music, and of how
two (or more) such melody lines move with respect to each other.

1. Direct motion—both melodic lines ascend or descend in pitch during the same
time interval

2. Contrary motion—one melodic line ascends while the other descends in pitch
during the same time interval

3. Oblique motion—one melodic line ascends or descends in pitch while the other
melodic line remains at the same pitch during the same time interval

Fux presents four rules for allowable motions, however these can be simplified into
a single rule—the only forbidden motion is direct into a perfect interval.

12.1.2 Harmony—Consonance and Dissonance

Harmony can be considered the vertical aspect of the music and what notes are
viewed as being consonant or dissonant to each other. The consonance and dissonance
interpretation will vary dependent on the genre or period under consideration, for
instance Baroque or modern jazz.

12.1 Gradus Ad Parnassum—Counterpoint 91

1. the unison, major third, perfect fifth, major sixth and octave are considered con-
sonant intervals

2. all other intervals, including the perfect fourth, are considered dissonant and only
permitted as transitions between consonant intervals which resolve them

Transition rules and handling of dissonances will be covered in detail in Chap. 13.

12.1.3 Species Counterpoint

Fux’s introduction of five species of counterpoint is the one still followed today. It
comprises

. Note against note—only checks for consonant intervals

. Two notes against note—in addition checks motion between melodic lines
. Four notes against note—in addition checks for dissonance transitions

. Ligature (Syncopation)—adds time shifting between melodic lines

. Florid—combines any of the first four species

O N N R S R

Later composers would elaborate the third species so that it could consider melodies
in triple, rather than just duple, time.

12.1.4 Modal Music

Although bearing the names of the earlier Greek (Ecclesiastical) modes, Fux uses
them to refer to the starting and finishing tonic note in his cantus firmus. They are
thus the current modal scales and comprise

. Ionian—tonic C—corresponds to a Major scale

. Dorian—tonic D

. Phrygian—tonic E

. Lydian—tonic F

. Mixolydian—tonic G

. Aeolian—tonic A—corresponds to a natural Minor scale

AN AW~

Note that Fux never uses the Locrian mode (tonic B) the darkest of all the modes
because, transposed into the key of C, it has too many accidentals. The Locrian mode
is however of great practical use in the composition of modern jazz counterpoint.

http://dx.doi.org/10.1007/978-3-319-60660-6_13

92 12 Johann Joseph Fux (1660 to 1741)

12.2 Strict Rules Allow Freedom of Composition

=1

This exercise by Fux was composed and checked using Ars-Nova’s Counterpointer
software.

The example is of Fux’s third species, cantus firmus below in the Phyrgian mode.
Although there are still a few inadmissible leaps in the melody this example shows
the fluidity achievable within strict counterpoint. Yes, you can compose dull, rote
music with, or without, rules, let your imagination guide your choices. May the force
be with you!

Chapter 13
Project Code

This project will allow the semi-automated composition of two part counterpoint in
the style of Palestrina or the Baroque period. It has a number of sub-projects

1.

2.

develop a pink noise generator for the automatic creation of a cantus firmus in a
user specified ecclesiastical mode

develop an efficient encoding of the rule set for user specified species of coun-
terpoint

. develop alist based representation of allowable voice leadings and a user specified

choice of note

. allow user to hear, save and playback this choice and the whole composition
. allow user to modify consonant/dissonant groups and motion rules to reflect a

particular genre such as modern jazz

13.1 The Colours of Noise

Noise can occur in many colours, including black, but only three are important
musically

1.

White describes noise with equal energy per frequency (o #) and is responsible
for the high frequency background hiss of a detuned television or radio receiver.
Its main use musically is to produce a cacophonous sound for mixing in with the

synthesis of percussion.
1

. Pink noise has equal energy per octave and so is & —;, ¢ ~ 1 and decays at

f‘(X 9
=348 Ttis self-similar (fractal) in nature having a blend of chaotic and correlated

behaviour that makes it very useful in music. It can be applied both to time to
generate rhythmic patterns, and to pitch to compose melodies which are tonal
rather aleatoric (random) in nature.

. Brown noise is that exhibited in the classic random (drunkard’s) walk where every

position reached is dependent on the immediately previous position. Its energy is

x # and so decays at [;fj,i thus making it generally too correlated for extensive

use in music. ‘Brown’ refers to the Scottish botanist Robert Brown who observed

© Springer International Publishing AG 2017 93
1. Gray, Snake Charming—The Musical Python,
DOI 10.1007/978-3-319-60660-6_13

94 13 Project Code

random motion of pollen grains in water under a microscope. This Brownian
motion was eventually explained by Albert Einstein as being due underlying
molecular motion.

The functions available from importing Python’s module random are adequate for
noise generation. A very good ‘dicey’ algorithm for generating the memory properties
of pink noise was invented by Richard Voss and described by Martin Gardner, see
Bookbackmatter. In it you roll a number of dice and sum then to get your initial value
of pink noise, then continue rolling and summing as follows

roll die ‘one’ every throw

roll die ‘two’ every second throw

roll die ‘three’ every fourth throw

roll die ‘four’ every eighth throw

and so on with each subsequent die rolled half as often as the previous die

The small test program ‘voss.py’ and typical output illustrates this for eight dice,
(] @ voss.py - [Usersfiaingray/Documents/Tex/snake code/project Vfvoss.py (3.5.2)
voss algorithm for pink noise using 8 dice

from random import randint
numDice,biasDie,listDice,1istPink=8,3.5,[0,0,0,0,0,0,0,0],[]

def rollDie():
return randint(1,6)-biasDie

def voss(index):
listDice[@]=rollDie()
1f index%2==0:1istDice[1]=rollDie()
if index%4==0:1istDice[2]=rollDie()
1f index%8==0:1istDice[3]=rollDie()
if index%16==0:11istDice[4]=rollDie()
1f index%32==0:11istDice[5]=rollDie()
1f index%64==0:1istDice[6]=rollDie()
1f index%128==0:1istDice[7?]=rollDie()
return listDice

def pinkNoise(listPink):
for index in range(2**numDice):
listPink.append(int(sum(voss(index))))
return listPink

print(pinkNoise(listPink))

Ln: 1 Col: 0

13.1 The Colours of Noise 95

L XoN) Python 3.5.2 Shell

Python 3.5.2 (v3.5.2:4def2a2901a5, Jun 26 2016, 10:47:25)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
Type "copyright", "credits" or "license()" for more informat
ion.

>>>

RESTART: /Users/iaingray/Documents/Tex/snake code/project V
/voss.py

c-z, -3, -6, -5, -5, -1, -2, 1, -4, -2, 1, o, -8, -5, -8, -1
e, 3, 2, 1,0, -3, -2, 2, 3, 3,1, 4, 2,0, 0,5, 3, 3, 1,

3, -4,3,2,5,1, -3, 2,1, -3, -3, -4, -4, -6, -1, 0, 1, 1
3 1] 5’ ?l 5, 0! 4! 6’ ?’ 2, 1’ a’ 1! 6] 3, ?l 6, 6l ?l 4! 2
’ 43 13 '1: 4: 6: 53 8’ 33 '41 aa 99 0: '43 '3s '31 as '11 =
1, 5, 3, 2, 2, -2, -3, -1, -3, -3, 1, 4, 0, 0, 0, 1, -1, -5,

5, -6 9, 1,

- , -7, -4, -3, -7, -7, -11, -10, -8, -4, -7, -4, 0,
3, 31, -1, -2, -4, -10, -8, -11, -9, -2, @, -7, -9, -7,
e, -6, -5, -7, -7, -10, -12, -12, -9, -15, -10, -7, -9, -13
’ '8’ '41 13 '31 a’ '81 '?s '8| '119 4! 33 6: 4’ 29 3’ es 9,

4, -1, 1, 1, @, -3, 0, 1, -9, -6, -6, -10, -4, -1, -8, -6,
i, o, -3, -5, -7, -3, -4, -6, -7, -4, -3, -3, -12, -12, -13,

-13, -4, -4, -1, -3, -3, -3, -7, -3, -5, -2, -3, -6, -13, -
13, =13, <12, 2, <2, =3, ‘&, =2, B, =2, L, =3, =1, =1, =1, =
B B = s AE =B o R = ol sl S =6 el sk =8
’ 5) 1) a: 0) '4: '5) '21 '3) "Zs '5) 0) e:I

>>> |

Ln: 7 Col: 4

Where the numbers represent semitone distance from the tonic over a two octave
range.

13.2 New Language Features

Project Headers given in New Language Features are applicable only to this section.
Lists, trees as a list of lists, and list manipulation functions will be used extensively
throughout this project.

96 13 Project Code

13.2.1 Project Header

You will need to use some features of NumPy and Matplotlib for this project so enter
here

import numpy as np

import matplotlib.pyplot as plt

13.2.2 Sound Storage

Arrays from NumPy will be used to hold the numerical samples of the sound. These
will be turned into WAV files for input, output and offline processing of these sounds.
Add the following line to the project header from scipy import io

13.2.3 MIDI—Musical Instrument Digital Interface

MIDI is a wide ranging technical standard allowing instruments such as synthesisers
to be connected together within acommon framework. Notes are specified by integers
in the range 0—127 with successive numbers representing semitone intervals. Middle
C (C4) is MIDI note number 60, with C3 equalling 48 and C5 equalling 72.

The small Python program in ‘ET.py’ enables the calculation of Equal Tempera-
ment note frequencies from a knowledge of the reference A frequency and the number
of semitones difference to the note, e.g. concert A is 440 Hz and MIDI note 69, middle
C (C4) is MIDI note 60 and hence -9 semitones.

root=2**(1/12)

def ET(refA, semitones):

freg=refA
if semitones<O0:
for st in range(abs(semitones)) :
freg=freqg/root
elif semitones>0:
for st in range(semitones) :
freg=freg*root
return freq

13.2 New Language Features 97

13.2.4 Composing the Cantus Firmus with Pink Noise
Generation

A minor modification to ‘voss.py’ will ensure that the pink noise output is tonal, rather
than chromatic, by specifying only the allowable semitone spacings over a two octave
range. Enter the following Python code as ‘cantus.py’ with correct indentations

import numpy as np

import matplotlib.pyplot as plt

midiC3=48

voss algorithm for pink noise using 8 dice

from random import randint

numDice,biasDie, listDice, listPink=8,3.5, [0,0,0,0,0,0,0,0], [midiC3]

tonalInt, indexRange=[-12,-10,-8,-7,-5.-3,-1,0,2,4,5,7,9,11,121,24

def rollDie():
return randint(1l,6)-biasDie

def voss (index) :

establishing which dice to roll
listDice[0]l=rollDie()
if index%2==0:1istDice[l]=rollDie()
if index%4==0:1listDice[2]=rollDie()
if index%8==0:1istDice[3]=rollDie()
if index%16==0:1istDice[4]=rollDie(
if index%32==0:1istDice[5]=rollDie(
if index%64==0:1istDice[6]=rollDie(
if index%128==0:1istDice[7]=rollDie
return listDice

def pinkNoise(listPink):
pink=0

mapping over required number of notes
for index in range (indexRange) :

pink=int (sum(voss (index)))

)
)
)
(

)

filtering out non-tonal intervals
while pink not in tonallInt:
pink=int (sum(voss (index)))
listPink.append (pink+midiC3)
listPink.append (midiC3)
return listPink
print (pinkNoise (listPink))
plt.plot(listPink, 'bo’)
plt.show()
The three new features are list related

1. list declarations as a dynamic structure indexed from 0, with [midiC3] being
the tonic for starting and ending the piece

2. list elements can be summed together

3. lists can be formed by appending new elements on to the end

The only difference from ‘voss.py’ is the additional ‘while’ loop to filter out non-
tonal intervals. Along with the ‘for’ loop this constitutes the map-filter paradigm in
functional programming.

98 13 Project Code

Ilustrated below is a typical IPython session output from the above program
where the graph’s vertical axis is the MIDI note number.

In [34]: runfile('/Users/iaingray/Documents/TeX/snake code/project V/
cantus.py', wdir='/Users/iaingray/Documents/TeX/snake code/project V')

[48, 50, 5@, 45, 45, 47, 43, 45, 47, 47, 5@, 48, 48, 45, 47, 52, 48, 45, 48,
50, 47, 48, 47, 48]

52 - -
51
Wiee L] .
49
48 LR L) L] L
47 L] LR] L L

46
45 L . L] L]

e

43
0

In [35]:

1Dwth il Duth I Hictaru lam

13.2.5 Sound Generation

There are two extensions to the earlier presentation of square and triangle wave sound
presented in Chap. 9.

1. Stereo Output—this will allow the simultaneous output of the Cantus Firmus
and the counterpoint on two separate channels.

2. Continuous Frequency—this will allow notes on a tonic scale to be output at
their correct frequencies.

13.2.5.1 Stereo Output

Enter the following test program into Python saving it as ‘stereo.py’.
cantus firmus 2 second
import numpy as np
from numpy import linspace, append
from scipy.io.wavfile import write
fregSamp=44100
duration=2
stereoNote=np.empty ([2,duration*fregSamp], float)
fregNote=441
numRpts=fregSamp//fregNote
print (fregNote, numRpts)
halfRpts=numRpts//2
firstHalf=1linspace(1.0,1.0,halfRpts,False) .astype(float)

http://dx.doi.org/10.1007/978-3-319-60660-6_9

13.2 New Language Features 99

lastHalf=linspace(-1.0,-1.0,halfRpts,False) .astype(float)
squData=append (firstHalf, lastHalf)
rpts=duration*fregNote-1
squNote=squData
while rpts>0:
squNote=append (squNote, squData)
rpts=rpts-1
print (squNote.shape)
fourth up 1 second
duration=1
fregNote=630
numRpts=fregSamp//fregNote
print (fregNote, numRpts)
halfRpts=numRpts//2
firstHalf=1linspace(1.0,1.0,halfRpts,False) .astype(float)
lastHalf=linspace(-1.0,-1.0,halfRpts,False) .astype(float)
fourthData=append (firstHalf, lastHalf)
rpts=duration*fregNote-1
fourthNote=fourthData
while rpts>0:
fourthNote=append (fourthNote, fourthData)
rpts=rpts-1
print (fourthNote. shape)
octave down 1 second
duration=1
fregNote=225
numRpts=fregSamp//fregNote
print (fregNote, numRpts)
halfRpts=numRpts//2
firstHalf=1linspace(1.0,1.0,halfRpts,False) .astype(float)
lastHalf=linspace(-1.0,-1.0,halfRpts,False) .astype(float)
octaveData=append (firstHalf, lastHalf)
rpts=duration*fregNote-1
octaveNote=octaveData
while rpts>0:
octaveNote=append (octaveNote, octaveData)
rpts=rpts-1
print (octaveNote.shape)
stereo 2 seconds
octdth=append (octaveNote, fourthNote)
level=0.67
sgquNote=level *squNote
print (octdth.shape)
stereoNote=np.array ((oct4th, squNote))
stereoNote=stereoNote. transpose ()
print (’stereo’, stereoNote.shape, stereoNote.ndim)
print (stereoNote)

write(’stereo.wav’, fregSamp, stereoNote)

The code is in four sections each headed by a highlighted comment.

100 13 Project Code

The first three sections construct three different frequencies and durations of
square wave as before. Allocation of memory for storing all three is provided by the
empty method applied to the stereoNote array.

The final section sets the Cantus Firmus output level to 2/3, and uses transpose
to put stereoNote in the correct shape for stereo output.

The display shows the stereo output with the counterpoint on the upper channel,
and the Cantus Firmus on the lower channel.

T = 9| B 574 1 da s da rcutx o swiwonsaiog 41 43 4542 + 5 5 0,

LT LT (T e k|-)i 4 b1 da s 2 0 o 0 S0 4 e 1 in s A2 % 43 d)

P e gt mape] [~]c] [O] [S[o]R2]REP e
- CoreAu.. & J® Soundflower (2ch) 3| 2(Stere.. T 4) Multi-Output De... S |

0.980 0985 0890 0995 1000 = 1.005 1010 1.015
xjmeo___w| 1.0
Slore, 441001
3200500 0.5-

[SE——— Salection Start: = End () Langh Ao Poskion:
B v il on 2 00h00m00.000s% 00h00m00.000s= 00hO00mO00.000s~

13.2.5.2 Continuous Frequency

This section contains two parts

1. common code applicable both to synthesis and counterpoint for setting up the
scales and multipliers

2. keeping the sampling rate constant but varying the internal waveform data for
output in stereo for counterpoint

Enter the following test program into Python saving it as ‘scale.py’.
scale playing
from math import floor
from numpy import linspace, append, zeros
from scipy.io.wavfile import write

13.2 New Language Features 101

fregSamp, rptsList, freqlist, zeroList=44100, [1,[], []
ionianET=[261.63,293.66,329.63,349.23,392.00,440.00,493.88,523.25]
for note in ionianET:
flNote=floor (fregSamp/note)
flNote=f1lNote if flNote%2==0 else flNote-1
rptsList.append (flNote)
fregList.append (floor (note))
zeroList.append (fregSamp-floor (note) *f1Note)
print (rptsList, freglList, zeroList)
scale=[]
triangle oscillator and padding
for count in range(8):
halfRpts=rptsList[count]//2
firstHalf=1linspace(-1.0,1.0,halfRpts,False) .astype(float)
lastHalf=linspace(1.0,-1.0,halfRpts,False) .astype(float)
triData=append (firstHalf, lastHalf)
rpts=freqgList[count]-1
triNote=triData
while rpts>0:
triNote=append (triNote, triData)
rpts=rpts-1
scale=append(scale, triNote)
padding=zeros (zeroList [count]) .astype(float)
scale=append (scale, padding)
write(’scale.wav’, fregSamp, scale)

The code is in two sections each headed by a highlighted comment.

1. The Ionian scale in C4 in equal temperament is used with these frequencies. The
floating point frequencies are truncated to the nearest even integer to allow for
triangular waveforms. Zero padding is used to ensure that each note is of the
same duration..

2. This generates triangular waves as previously in Chap.9 and then appends zero
padding.

The illustrations show the seamless joins in a scale over eight seconds, and an enlarge-
ment of the zero padding at three seconds.

—— e —— B Fur —— e —— BT e

http://dx.doi.org/10.1007/978-3-319-60660-6_9

102 13 Project Code

13.2.6 Sound Output of Cantus Firmus

The following Python program in ‘socf.py’ uses the list output from ‘cantus.py’,
the continuous frequencies of ‘scale.py’ and a dictionary of MIDI notes and their
frequencies from ‘ET.py’ to allow playback of a generated Cantus Firmus.
Cantus Firmus playing
from math import floor
from numpy import linspace, append, zeros
from scipy.io.wavfile import write
fregSamp, rptsList, freqgqlist, zeroList=44100, (], [], []
cantusFirmus=[48,50,50,45,45,47,43,45,47,47,50,48,
48,45,47,52,48,45,48,50,47,48,47,48]
rangeET=36: 65.41, 38: 73.42, 40: 82.41, 41: 87.31,
43:. 98, 45: 110, 47: 123.47, 48: 138.81,
50: 146.83, 52: 164.81, 53: 174.61,
55: 196, 57: 220, 59: 246.94, 60: 261.63
notes=[]
for idx in cantusFirmus:
note=rangeET [1dx]
notes.append (note)
for note in notes:
flNote=floor (fregSamp/note)
flNote=flNote if flNote%2==0 else flNote-1
rptsList.append (f1Note)
freqgList.append(floor (note))
zeroList.append (fregSamp-floor (note) *f1Note)
print (rptsList, freqgList, zeroList)
CF=1[]
triangle oscillator and padding
for count in range(24):
halfRpts=rptsList[count]//2
firstHalf=linspace(-1.0,1.0,halfRpts,False) .astype(float)
lastHalf=linspace(1.0,-1.0,halfRpts,False) .astype(float)
triData=append (firstHalf, lastHalf)
rpts=freqgList[count]-1
triNote=triData
while rpts>0:
triNote=append (triNote, triData)
rpts=rpts-1
CF=append (CF, triNote)
padding=zeros (zeroList[count]) .astype(float)
CF=append (CF, padding)
write(’'CF.wav’, fregSamp, CF)

13.2 New Language Features 103

A dictionary is an association list where key : data pairings are separated by com-
mas and enclosed in {}s. The first highlight shows the creation of a MIDI note :
frequency dictionary. While the second highlight shows the extraction of frequency
for a given MIDI note.

13.2.7 The Rules in Python

The rules considered are those for consonance and counterpoint motion only at this
stage.

In Python MIDI notes are used modulo 12 for checking all rule compliances for
the proposed counterpoint.

13.2.7.1 Allowable Consonances

The notes for the Cantus Firmus (CF) are subtracted (modulo 12) from those of the
Counterpoint (CP) and checked for membership of consonance=[0,4,7,9].
In Python this is

if (CP-CF)%12 in consonance:

13.2.7.2 Allowable Motions

A list of the Cantus Firmus dynamics (rising, falling or staying same) is compared
with that of two successive counterpoint notes to determine the motion type of Direct,
Contrary or Oblique. The only motion forbidden is Direct into a Perfect consonance
(Unison, Perfect Fifth or Octave). In Python this is (counter-cantus) $12
not in [0, 7].

13.2.7.3 Allowable Dissonance Transitions
In third species only the third of four notes is allowed to be dissonant not in

[0,4,7,9] provideditisin [2,5,11] and follows in step. This will be added
in Chap. 14.

http://dx.doi.org/10.1007/978-3-319-60660-6_14

104 13 Project Code

13.2.8 Output of Whole, Half and Quarter Notes for
Counterpoint

The Cantus Firmus is played in whole notes (semi-breves), whereas the Counterpoint
uses fractions of these depending on its species.

1. First Species (note against note) continues to use whole notes (semi-breves)
2. Second Species (two note against one) uses half notes (minims)
3. Third Species (four notes against one) uses quarter notes (crotchets)

These different note lengths will be generated as in Continuous Frequency above
with the appropriate scales for durations and paddings. The fregSamp remains at
44100Hz.

13.2.9 User Interface and Sound

The widgets from tkinter that will form the GUI will be

Overall a single Frame to contain remaining widgets
Overall a Button to start the program when all user entries, including default
values, are completed
Cantus Firmus two Buttons for generating and playing the Cantus Firmus
Species a Radiobutton to select from Species 1-3 of counterpoint
Counterpoint Buttons to record and erase, move up and down allowable notes or
remain on the same note, and playback current notes

13.2.9.1 GUI Helper Up Down Buttons

In order to have the Up and Down buttons moving by degrees in the modal scale use
is made of dictionaries. Type the following into ‘updown.py’
up,down=1, -1
upIonian={0:2,1:1,2:2,3:1,4:1,5:2,6:
downIonian={0:1,1:1,2:2,3:1,4:2,5:1
def upDown (dirn,note)
notel2=note%$12
if dirn==up:
return note+upIonian[notel2]
return note-downIonian[notel2]
print (upDown (up, 64))

,8:1,

2 1,9 0:1,11:13}
,7:2,8:1,

1,7: :2,1
:1,6:1 9:2,10:1,11:2}

print (upDown (down, 67))
Note that return is unconditional so no else is required.

13.3 The Code 105

13.3 The Code

The project Python code is thus a composite of the above subsections, with suitable
modifications to accommodate the GUI. The lists passed as parameters will either
be as MIDI notes or frequencies for the Cantus Firmus (CF) or Counterpoint (Cpt).
Sound output will be in stereo using square wave oscillators.

13.3.1 Project Header

Type into ‘main5.py’
from math import *
from fractions import Fraction
import numpy as np
from tkinter import *
from tkinter import ttk
freqgSamp=44100
allowFregs=[22050,11025,7350,4410,3675,3150,2450,2205,
1575,1470,1225,1050,882,735,630,525,490,
450,441,350,315,294,245,225,210,180,175,
150,147,126,105,98,90,75,70,63,60,50,45,42,35,30]
allowMods=[30,25,21,18,15,14,10,9,7,6,5,3,2,11
midiC2,midiC3,midiC4,midiC5,midiC6=36,48,60,72,84
midiET={36:65.41,38:73.42,40:82.41,41:87.31,
43:98.00,45:110.00,47:123.47,
48:130.81,50:146.83,52:164.81,53:174.61,
53:196.00,57:220.00,59:246.94,
60:261.63,62:293.66,64:329.63,65:349.23,
67:392.00,69:440.00,71:493.88,
72:523.25,74:587.33,76:659.26,77:698.46,
79:783.99,81:880.00,83:987.77,

84:1046.50}
tonalInt=(-12,-10,-8,-7,-5,-3,-1,0,2,4,5,7,9,11,12]
consonance, perfect, imperfect=[0,4,7,91,1[0,71,1[4,9]

speciesDur={1:44100,2:22050,3:11025}

up,down=1, -1
upIonian={0:2,1:1,2:2,3:1,4:1,5:2,6:1,7:2,8:1,9:2,10:1,11:1}
downIonian={0:1,1:1,2:2,3:1,4:2,5:1,6:1,7:2,8:1,9:2,10:1,11:2}

106 13 Project Code

13.3.2 Generating the Cantus Firmus with Pink Noise

This composes the Cantus Firmus bars in semi-breves used throughout as a basis for
the Counterpoint.

Inputs central tonic note, number of bars
Output complete midiCF

Type into ‘main5.py’
def cantusFirmus (centreC,numBars) :
def rollDie():
return randint(1l,6)-biasDie
def voss(index) :
listDice[0]=rollDie()
if index%2==0:1istDice[l]=rollDie(
if index%4==0:1istDice[2]=rollDie
if index%8==0:1istDice[3]=rollDie(
if index%16==0:1istDice[4]=rollDie
if index%32==0:1istDice[5]=rollDie
if index%64==0:1istDice[6]=rollDie
if index%128==0:1istDice[7]=rollDi
return listDice
def pinkNoise(listPink):
pink=0
for index in range (indexRange) :
pink=int (sum(voss (index)))
filtering out non-tonal intervals

)
)
)
()
()
()
e()

while pink not in tonallInt:
pink=int (sum(voss (index)))
listPink.append (pink+centreC)
listPink.append (centreC)
return listPink
numDice,biasDie,listDice,1listPink=8,3.5,[0,0,0,0,0,0,0,0], [centreC]
indexRange=numBars-2
listPink=pinkNoise (listPink)
midiCF

return midiCF

13.3.3 Cantus Firmus Dynamics

Generate a list from CF showing its underlying dynamics for determination of Cpt
motions.

Input midiCF
Output list of underlying dynamics

Type into ‘main5.py’
def dynamicCF (midiCF) :
dynCrF=1[]
for index in range(len(midiCF)-1):

13.3 The Code 107

dir=midiCF[index+1] -midiCF [index]
if dir>0:
dyn='rise’
elif dir<0:
dyn='"fall’
else:
dyn='"gsame’
dynCF=np.append (dynCF, dyn)
return dynCF

13.3.4 Rules of Counterpoint

Consonance, Motion and Dissonance are handled by a knowledge of the Cantus
Firmus, current note and dynamics, proposed Counterpoint note and the Species.
This returns an accept Boolean value.

Inputs indexCF, midiCF (list), dynCF (list), midiCpt (partial list), noteCpt (candi-
date)
Output accept (Boolean), list of MIDI Counterpoint notes

Type into ‘mainS.py’
def rules(indexCF,midiCF,dynCF,midiCpt,noteCpt) :
def motion() :
prevCpt=midiCpt[-1]
motCpt=noteCpt-prevCpt
currDynCF=dynCF [indexCF]
if currDynCF=='rise’ and motCpt>0:
return ‘direct’
elif currDynCF=='fall’ and motCpt<O0:
return ‘direct’
elif currDynCF=='same’ and motCpt==0:
return ‘direct’
else:
return ‘indirect’
currInt=(noteCpt-midiCF[indexCF]) %12
accept=False
if motion()=='indirect’:
if currInt in consonant:
midiCpt=np.append (midiCpt,noteCpt)
accept=True
elif currInt in imperfect:
midiCpt=np.append (midiCpt,noteCpt)
accept=True
return (accept,midiCpt)

108 13 Project Code

13.3.5 Converting MIDI to Frequency

Before being output as sound the MIDI notes must be converted to frequencies.

Input list of MIDI note
Output list of frequencies

Type into ‘main5/py’
def midi2freqg(midiList) :
fregList=1[]
for note in midiList:
fregList.append (midiET [note])
return fregList

13.3.6 Handling Whole, Half and Quarter Notes

Cantus Firmus and Species 1 Counterpoint are in whole (semi-breve) notes, Species 2
Counterpoint is in half (minim) notes and Species 3 Counterpoint in quarter (crotchet)
notes. These durations are handled by a dictionary speciesDur giving the various
durations of the sample rate fregSamp.

Inputs list of frequencies, species
Output sound datal list

Type into ‘main5.py’
def fregData (freqgList, species):
def padSaw (fregNote) :
numRpts=modSamp//floor (fregNote)
sawData=np.linspace(1.0,-1.0,numRpts,False) .astype(float)
rpts=floor (fregNote) -1
sawNote=sawData
while rpts>0:
sawNote=np.append (sawNote, sawData)
rpts=rpts-1
padding=np.zeros (modSamp-len (sawNote))
sawNote=np.append ((sawNote, padding))
return sawNote
modSamp=speciesDur [species]
noteData=1[]
for note in freqgList:
noteData=np.append (notedata, padSaw (note))

return noteData

13.3 The Code 109

13.3.7 Stereo Output

Final output involves combining the wavCF and wavCpt into a two dimensional
array, list of lists, transposing this and outputting this as a stereo ‘.wav’ file.

Inputs wavCF, wavCpt, output file name
Output None

Type into ‘mainS.py’
def stereo(wavCF,wavCpt, stereoFile) :
stereoNotes=np.array ((wavCF,wavCpt))
stereoNotes=stereoNote.transpose ()
lo.write(stereoFile+’ .wav’, fregSamp, stereoNotes)
return None

13.3.8 User Interface

Control the counterpoint up/same/down key GUI Button presses to only allow modal
degree steps.

Inputs direction key, original MIDI note
Output resultant MIDI note

Type into ‘main5.py
def upDown (dirn,note) :
notel2=note%12
if dirn==up:
return note+uplIonian[notel2]
return note-downIonian[notel2]

Edit the counterpoint list.

Inputs counterpoint MIDI list, MIDI note
Output counterpoint MIDI list

Type into ‘main5.py’
def addNote (cptList,note):
cptList.append (note)
return cptList
def delNote (cptList):
del cptList[-1]
return cptList
Display the Cantus Firmus and Counterpoint.

Inputs cantus firmus and counterpoint MIDI lists, species of counterpoint
Output None

110 13 Project Code

Type into ‘main5 .py’
def display (CFList,cptList, species):
plt.plot (CFList, 'bo’)
x1lst,lcpt=[],len(cptList)
if species==1:
plt.plot(cptList, 'r.”")
elif species==2:
1dx=0
while idx<lcpt/2:
xlst.append (idx)
idx=1idx+0.5
plt.plot(xlst,cptlList, ‘r.’)
else:
1dx=0
while idx<lcpt/4:
xlst.append (idx)
idx=1idx+0.25
plt.plot(xlst,cptlList, ‘'r.”)
plt.show()
The full functionality of a Counterpoint assistant is contained in ‘main5.py’. This
can be further enhanced with a full GUI as in Chap. 14.

http://dx.doi.org/10.1007/978-3-319-60660-6_14

Part VI
On Safari

Chapter 14
Where Next?

This chapter is an ordered list of extensions and enhancements to each project left
as exercises to the reader.

14.1 Generic Header

The following in ‘header.py’ will prove useful in any extension

generic header delete those not needed

import time

from math import *

from fractions import *

from random import randint

import numpy as np

import scipy.special as spe

import scipy.io.wavfile as io

import scipy.signal as sig

import scipy.fftpack as fft

import matplotlib.pyplot as plt

import matplotlib.animation as anim

from mpl_toolkits.mplot3d import Axes3D

from tkinter import *

from tkinter import ttk

import tkinter.colorchooser as col

fregSamp=44100

allowFregs=[22050,11025,7350,4410,3675,3150,2450,2205,
1575,1470,1225,1050,882,735,630,525,490,
450,441,350,315,294,245,225,210,180,175,
150,147,126,105,98,90,75,70,63,60,50,45,42,35,30]

allowMods=[30,25,21,18,15,14,10,9,7,6,5,3,2,1]1

midiC2,midiC3,midiC4,midiC5,midiC6=36,48,60,72,84

midiET={36:65.41,38:73.42,40:82.41,41:87.31,

43:98.00,45:110.00,47:123.47,
48:130.81,50:146.83,52:164.81,53:174.61,

© Springer International Publishing AG 2017 113
1. Gray, Snake Charming—The Musical Python,
DOI 10.1007/978-3-319-60660-6_14

114 14 Where Next?

53:196.00,57:220.00,59:246.94,
60:261.63,62:293.66,64:329.63,65:349.23,
67:392.00,69:440.00,71:493.88,
72:523.25,74:587.33,76:659.26,77:698.46,
79:783.99,81:880.00,83:987.77,

84:1046.50}
tonalInt=(-12,-10,-8,-7,-5,-3,-1,0,2,4,5,7,9,11,12]
consonance, perfect, imperfect=[0,4,7,91,1[0,71,1[4,9]

speciesDur={1:44100,2:22050,3:11025}
up,down=1, -1
upIonian={0:2,1:1,

2:2,3:1,4:1,5:2,6:1, ,8:1,9:2,10:1,11:1}
downIonian={0:1,1:1,2:2,3:1 5:1,6 8

1 7:2 9
,2:2,3:1,4:2,5:1,6:1,7:2,8:1,9:2,10:1,11:2}

14.2 Part II—Visualising Sound

Develop a fully animated circular drumhead that allows you to specify the point to
hit the drum and then to hear how it sounds. The various stages involved are

1.

animating two dimensional wave propagation using Bessel functions

2. extending this this to three dimensional wave propagation over a circular mem-

brane noting that the radial components are as specified in 1 above

. adding user interface control over fundamental frequency and vibration mode of

drum.

Basic animation can be enhanced by

GUI adding a GUI using techniques from Chap.9.
Sound when an enhanced percussive synthesiser is available add drum sounds.
Animation consider the functions includedinmatplotlib.animationtosee

if they can offer smoother animation.

14.3 Part III—Creating Sound

The basic synthesiser can be expanded to a full synthesiser by the following steps in
order for each module

GUI complete GUI functionality as in Chap. 13.

VCO implement full frequency using the methods of Chap. 13.

VCO add pulse width modulation to the square wave oscillator by allow-
ing its mark:space ratio (firsthalf lastHalf) to vary from
1:1.

VCO allow variable note length and tempo using the methods of Chap. 13

to allow percussion synthesis.

http://dx.doi.org/10.1007/978-3-319-60660-6_9
http://dx.doi.org/10.1007/978-3-319-60660-6_13
http://dx.doi.org/10.1007/978-3-319-60660-6_13
http://dx.doi.org/10.1007/978-3-319-60660-6_13

14.3 Part III—Creating Sound 115

VCO

VCO

VCF
VCF

VCF

EG

EG

EG

LFO
LFO
Displays

GUI
Duophony

Miscellaneous

add noise generators for white and pink noise using the methods
of Chap. 13.

add an all-pass filter after each oscillator to allow phase changing.
This should be done by rotating the entire ‘.wav’ data as rotating
an individual waveform will introduce clicks between waves not
matching up.

add full frequency input for the cutoff frequency.

implement high-pass, band-pass and band-stop filters from
scipy.signal.

add resonance to the filter. This is an involved problem in Digital
Signal Processing but you could replace the scipy.signal.
butter Butterworth filter with a scipy.signal.chebyl
Chebyshev type I filter specifying suitable ripple in the passband.
As an alternative to scipy.signal many good filter design
tools. such as FilterDesignLab-IIR shown at foot of this chapter.
add a second envelope generator to control the cutoff frequency of
the VCF.

normally the ADSR is controlled by a key pressed on and off,
simulate this with a button widget in the GUI.

add extra envelope stages beyond the four of ADSR.

allow targeting of the VCO to create Frequency Modulation (FM)
as vibrato, using the techniques for continuous frequencies given
in Chap. 13.

use waveforms other than a sine wave for modulation.

add a scipy.signal.spectogram to monitor the harmonic
content over time of the waveform.

add GUI widgets to accommodate new functionality.

add two note polyphony using the techniques for stereo sound gen-
eration given in Chap. 13.

add a Sequencer for recording and playback of melodies, using the
techniques for scale generation given in Chap. 13.

Visit https://wiki.python.org/moin/PythonInMusic to see what is available in for
instance MIDI interfacing for an external keyboard.

14.4 Part IV—Visualising Harmony

Visualisation can be enhanced by

GUI add canvas widget for drawing as in Matplotlib examples.
GUI add a beating interval to range of intervals.
Sound add playback of the interval using the techniques for stereo sound

generation given in Chap. 13.

http://dx.doi.org/10.1007/978-3-319-60660-6_13
http://dx.doi.org/10.1007/978-3-319-60660-6_13
http://dx.doi.org/10.1007/978-3-319-60660-6_13
http://dx.doi.org/10.1007/978-3-319-60660-6_13
https://wiki.python.org/moin/PythonInMusic
http://dx.doi.org/10.1007/978-3-319-60660-6_13

116
Animation

niques given in Chap. 5.
GUI

14.5 Part V—Composition

14 Where Next?

add a ‘slowed down’ animation of the displayed graphs using the tech-

add GUI widgets to accommodate new functionality.

Basic Counterpoint can be enhanced as follows

GUI
Cantus Firmus
octave ranges.

complete GUI functionality as in Chap. 13.
add Cantus Firmus above as well as below by swapping the note

add a complete set of modes beyond the Ionian with their tonics as
add dissonance handling and disallow leaps of more than a perfect

add species 4 (ligature) and 5 (florid). Syncopation is achieved by

Modes

in Chap. 12.
Rules

fifth to the consonance and motion rules already included.
Species

rotating the Cantus Firmus list of notes.
Consonance extend allowable consonances to reflect those of jazz scales.
Motion extend allowable motions to reflect those of jazz scales.
GUI

FilterDesignLab-IIR

Filter Specifications
Lowpa . Highps Bandps Basdst
Fp WR000 Fs 26000 [HE)

Bumerwor_ Chelsy-| Cheby-d Bliptic Noemal Form

g

Dwect Form 1 Do
Ap 00500 Aw -0EE00 dTIR]

add GUI widgets to accommodate new functionality.

Filter Status
Order)
Suability | St

Code Properties

1000v-02

258

“BR000N%

[KT} 1500 100" SINITR 1,000z T|+2.80"RANDN
— wirj=tutis

EMAM

i

0 100 86 00 380 400 450 B0
2]

165 200 360 AD0 8GO 800 720 BG0 WOO W8
s)
Poies & Zoros Fier Cosfficients C-Code Matiss Code

B
000 Boe w6

o
0 100 85 00 80 400 450 B0
(i

Matthias Kretschmann - author of FilterDesignLab-IIR corresponding wedpage (http://www.mtk-digital.

com/fdl/)

http://dx.doi.org/10.1007/978-3-319-60660-6_5
http://dx.doi.org/10.1007/978-3-319-60660-6_13
http://dx.doi.org/10.1007/978-3-319-60660-6_12
http://www.mtk-digital.com/fdl/
http://www.mtk-digital.com/fdl/

Curriculum Vitae

Iain Gray AFIMA Hons. BSc (Mathematics and Computational
Science) Dundee

My background is that I have recently retired, after 35 years, as a Principal Sys-
tems Engineer working as a mathematician in radar research for a leading avionics
company (Ferranti which latterly became Selex ES). I have over forty years pro-
gramming experience and have worked in all the major paradigms. These comprise
functional/declarative languages (Common Lisp and Prolog), procedural languages
(Fortran, C and Pascal), “combination” languages (Scheme and Python) and object
oriented languages (Simula and Ada).

1979-81 Navigation Systems Division—compiler development and implementation
1981-88 Display Systems Division—aircraft moving map displays and digital map-
ping

1988-90 Joint Venture—development of an aircraft mission management aid
1990-2014 Radar Systems Division—design and analysis of tracking systems
Papers presented

1989 NATO AGARD Toulouse

“Towards a Mission Management Aid” (jointly with J Catford)

1992 NATO AGARD Edinburgh

“Planning for Air to Air Combat”

1997 Radar 97 Edinburgh

“Effects of Earth’s Curvature on Radar Tracking”

2002 GRS Radar Conference Bonn

“Advanced Tracking Systems” (jointly with Dr. B Spratt)

2004 Kalman Filtering Conference Reading

“Behavioural Analysis of Kalman Filters” (jointly with Dr. B Spratt)

© Springer International Publishing AG 2017 117
1. Gray, Snake Charming—The Musical Python,
DOI 10.1007/978-3-319-60660-6

118 Curriculum Vitae

Institute of Mathematics and its Applications (IMA)
1982—-84 Scottish Branch Council

mid 1980s Elected Associate Fellow (AFIMA)
1986-88 Main Council

Appendix
Internet Links

These websites have been useful in preparing the document and checking the results.

Part 1

SO 0O\ NN

—

. Python homepage https://www.python.org

. Python downloads https://www.python.org/downloads/

. Python documentation https://docs.python.org/

. Tcl/Tk downloads http://www.activestate.com/activetcl/downloads
. Anaconda https://www.continuum.io/downloads

. PyQt https://riverbankcomputing.com/software/pyqt/intro

. PySide https://wiki.qt.io/PySide

. wxPython http://www.wxpython.org

. Python(x,y) http://python-xy.github.io

. Audacity http://www.audacityteam.org

Part I1

—_—

(O8]

4.

. Mark Kac https://en.wikipedia.org/wiki/Mark_Kac
. Mark Kac’s original paper http://www.maa.org/sites/default/files/pdf/upload_

library/22/Chauvenet/Kac68chv.pdf

. Analysis of paper https://en.wikipedia.org/wiki/Hearing_the_shape_of_a_drum

Drumhead modes https://en.wikipedia.org/wiki/Vibrations_of_a_circular
_membrane

. Vibration modes http://www.acs.psu.edu/drussell/Demos/MembraneCircle/

Circle.html

. Matplotlib tutorial https://www.labri.fr/perso/nrougier/teaching/matplotlib/
. scipy drum example https://docs.scipy.org/doc/scipy/reference/tutorial/special.

html

. Matplotlib graphics examples http://matplotlib.org/examples/index.html

© Springer International Publishing AG 2017 119
1. Gray, Snake Charming—The Musical Python,
DOI 10.1007/978-3-319-60660-6

https://www.python.org
https://www.python.org/downloads/
https://docs.python.org/
http://www.activestate.com/activetcl/downloads
https://www.continuum.io/downloads
https://riverbankcomputing.com/software/pyqt/intro
https://wiki.qt.io/PySide
http://www.wxpython.org
http://python-xy.github.io
http://www.audacityteam.org
https://en.wikipedia.org/wiki/Mark_Kac
http://www.maa.org/sites/default/files/pdf/upload_library/22/Chauvenet/Kac68chv.pdf
http://www.maa.org/sites/default/files/pdf/upload_library/22/Chauvenet/Kac68chv.pdf
https://en.wikipedia.org/wiki/Hearing_the_shape_of_a_drum
https://en.wikipedia.org/wiki/Vibrations_of_a_circular_membrane
https://en.wikipedia.org/wiki/Vibrations_of_a_circular_membrane
http://www.acs.psu.edu/drussell/Demos/MembraneCircle/Circle.html
http://www.acs.psu.edu/drussell/Demos/MembraneCircle/Circle.html
https://www.labri.fr/perso/nrougier/teaching/matplotlib/
https://docs.scipy.org/doc/scipy/reference/tutorial/special.html
https://docs.scipy.org/doc/scipy/reference/tutorial/special.html
http://matplotlib.org/examples/index.html

120 Appendix: Internet Links

Part I1I

. Fourier https://en.wikipedia.org/wiki/Joseph_Fourier

. Fourier transform https://en.wikipedia.org/wiki/Fourier_transform

. Bob Moog https://en.wikipedia.org/wiki/Robert_Moog

. Subtractive synthesis https://documentation.apple.com/en/logicstudio/instru
ments/index.htmlchapter=A

. Moog website http://www.moogmusic.com

. Arturia website https://www.arturia.com

. SignalScope http://www.faberacoustical.com/apps/mac/signalscope/

. SignalSuite http://www.faberacoustical.com/apps/mac/signalsuite/
9. Filter design http://www.mtk-digital.com/fdl/http://www.mtk-digital.com/fdl/

10. Prime factorisation http://factornumber.com/?page=44100

11. Python music packages https://wiki.python.org/moin/PythonInMusic

12. tkinter tutorial http://www.tkdocs.com

B W=

0N N W

Part IV

1. Blackburn https://en.wikipedia.org/wiki/Hugh_Blackburn

2. Harmonograph https://en.wikipedia.org/wiki/Harmonograph

3. Blackburn pendulum http://paulwainwrightphotography.com/pendulum_
gallery_video_page.shtml courtesy of http://paulwainwrightphotography.com

4. Drawing harmonic ratios http://www.fxmtech.com/harmonog.html courtesy of

Francis McConville

. Lissajous’ curves https://en.wikipedia.org/wiki/Lissajous_curve

. Just tuning https://en.wikipedia.org/wiki/Just_intonation

7. PrimoGraf http://leafpdx.bigcartel.com/product/primograf-drawing-machine0

AN

Part V

. Fux https://en.wikipedia.org/wiki/Johann_Joseph_Fux

. Counterpoint https://en.wikipedia.org/wiki/Counterpoint

. Counterpointer http://www.ars-nova.com/cp/

. Coloured noise https://en.wikipedia.org/wiki/Colors_of_noise
. Tuning http://www.rollingball.com/images/HT.pdf

. MIDI https://en.wikipedia.org/wiki/MIDI

AN N AW

Bibliography
These books have proven useful in preparing the document and checking the results.

Part 1

e M Lutz, “Python Pocket Reference”, O’Reilly, 2014

e J Chan, “Python: Learn Python in One Day and Learn It Well”, Learn Coding Fast,
2014

e The above is only representative of many good Python tutorial books

https://en.wikipedia.org/wiki/Joseph_Fourier
https://en.wikipedia.org/wiki/Fourier_transform
https://en.wikipedia.org/wiki/Robert_Moog
https://documentation.apple.com/en/logicstudio/instruments/index.html chapter=A
https://documentation.apple.com/en/logicstudio/instruments/index.html chapter=A
http://www.moogmusic.com
https://www.arturia.com
http://www.faberacoustical.com/apps/mac/signalscope/
http://www.faberacoustical.com/apps/mac/signalsuite/
http://www.mtk-digital.com/fdl/http://www.mtk-digital.com/fdl/
http://factornumber.com/?page=44100
https://wiki.python.org/moin/PythonInMusic
http://www.tkdocs.com
https://en.wikipedia.org/wiki/Hugh_Blackburn
https://en.wikipedia.org/wiki/Harmonograph
http://paulwainwrightphotography.com/pendulum_gallery_video_page.shtml
http://paulwainwrightphotography.com/pendulum_gallery_video_page.shtml
http://paulwainwrightphotography.com
http://www.fxmtech.com/harmonog.html
https://en.wikipedia.org/wiki/Lissajous_curve
https://en.wikipedia.org/wiki/Just_intonation
http://leafpdx.bigcartel.com/product/primograf-drawing-machine
https://en.wikipedia.org/wiki/Johann_Joseph_Fux
https://en.wikipedia.org/wiki/Counterpoint
http://www.ars-nova.com/cp/
https://en.wikipedia.org/wiki/Colors_of_noise
http://www.rollingball.com/images/HT.pdf
https://en.wikipedia.org/wiki/MIDI

Appendix: Internet Links 121

e JM Stewart, “Python for Scientists”, Cambridge University Press, 20144
e A good reference on object orientated Python.

Part I11

e EO Brigham, “The Fast Fourier Transform and Its Applications” Prentice Hall,
1988

M Puckette, “The Theory and Technique of Electronic Music”, WSPC, 2007

A Farnell, “Designing Sound”, MIT Press, 2015

A Kamenov, “Digital Signal Processing for Audio Applications”, CreateSpace
Independent Publishing Platform, 2014

R Allred, “Digital Filters for Everyone”, Creative Arts & Sciences House, 2015
T Pinch and F Trocco, “Analog Days: The Invention and Impact of the Moog
Synthesizer”, Harvard University Press, 2004

BK Shepard, “Refining Sound: A Practical Guide to Synthesis and Synthesizers”,
Oxford University Press, 2013.

Part IV

e A Ashton, “Harmonograph: A Visual Guide to the Mathematics of Music”,
Wooden Books, 2005

e LP Pook, “Understanding Pendulums”, Springer, 2011

e J Tyndall, “Sound: A Course of Eight Lectures Delivered at the Royal Institution
of Great Britain”, Adamant Media Corporation, 2005.

Part V

e JJ Fux, “The Study of Counterpoint: From Johann Joseph Fux’s Gradus Ad Par-

nassum”, Norton, 1965

D Tymoczko, “A Geometry of Music: Harmony and Counterpoint in the Extended

Common Practice”, Oxford University Press, 2011

e J Collins, “Counterpoint and How to Use It in Your Music”, Echo Pier Publishing,
2012

e RF Voss and J Clarke, “1/f noise” in music: Music from “1/f noise”, Journal of
Acoustical Society of America, 63, 1918, pp 258-263

e M Gardner, “Fractal Music, Hypercards and More.... Mathematical Recreations

from ‘Scientific American’ magazine”, WH Freeman, 1991

M Hewitt, “Musical Scales of the World”, The Note Tree, 2013.

	Preface
	Intended Audience
	Prerequisites
	Typography
	A Note on the Code
	Structure of Book

	Acknowledgements
	Contents
	Part I Snake in the Grass---Python and Its Environment
	1 Installing Python
	2 The Python Shell---IDLE
	2.1 Basic Python Syntax
	2.1.1 Comments
	2.1.2 Indentation and Block Structure
	2.1.3 Input and Output
	2.1.4 Declaration of Simple Types and Type Casting
	2.1.5 Arithmetic Operators and Precedence
	2.1.6 Conditional Expressions, Relational and Logical Operators
	2.1.7 Conditional Statements
	2.1.8 Looping Statements

	2.2 Entering Python Code
	2.2.1 The Python Interpreter
	2.2.2 The Python Editor

	3 Package Management
	3.1 Anaconda
	3.1.1 Installing Anaconda
	3.1.2 Using Anaconda

	3.2 Alternatives

	4 Audacity®
	4.1 Installing
	4.2 Using

	Part II Banging the Drum---Visualising Sound
	5 Mark Kac (1914 to 1984)
	5.1 Hearing the Shape of a Drum
	5.2 Riding the Waves---Bessel Functions
	5.3 Vibrating Plates---Chladni and Germain
	5.4 Drumhead Modes

	6 Project Code
	6.1 New Language Features
	6.1.1 Project Header
	6.1.2 Plotting Bessel Functions
	6.1.3 Graphing in 3D
	6.1.4 Animation of Square Wave from Summing Sinusoids
	6.1.5 Animating in 3D, for Wave Propagation Along an Axis

	6.2 The Code
	6.2.1 Project Header

	Part III Heat in the Desert---Sculpting Sound
	7 Joseph Fourier (1768 to 1830)
	7.1 The Army of Egypt
	7.2 Feeling the Heat---Fourier Transforms
	7.3 Chasing Rainbows---Frequency Spectra

	8 Bob Moog (1934 to 2005)
	8.1 Analogue Additive Synthesis
	8.2 Analogue Subtractive Synthesis
	8.2.1 Oscillators
	8.2.2 Filters
	8.2.3 Amplifier
	8.2.4 Envelope Generation
	8.2.5 Modulation

	9 Project Code
	9.1 New Language Features
	9.1.1 Using Tkinter
	9.1.2 Project Header
	9.1.3 Sound Storage
	9.1.4 Harmonic Analysis
	9.1.5 Oscillators and Mixer
	9.1.6 Low Pass Filtering
	9.1.7 Implement Butterworth Low Pass Filter
	9.1.8 Amplitude Envelope Generation
	9.1.9 Low Frequency Oscillator and Modulation
	9.1.10 Analysis Displays
	9.1.11 Graphical User Interface
	9.1.12 GUI Support for Mixer Button

	9.2 The Code
	9.2.1 Project Header
	9.2.2 Oscillator and Mixer
	9.2.3 Filter
	9.2.4 Amplitude Envelope Generator
	9.2.5 Modulator
	9.2.6 Amplifier
	9.2.7 Displays and Output
	9.2.8 User Interface

	Part IV The Harmonograph---Victorian Pendulum Toy
	10 Hugh Blackburn (1823 to 1909)
	10.1 Motion of a Damped Pendulum
	10.2 Blackburn's Double Pendulum
	10.3 Harmonic Ratios---The Lateral Harmonograph
	10.4 Parallels---Bowditch and Lissajous
	10.5 Of Gears and Motors---The Pintograph

	11 Project Code
	11.1 New Language Features
	11.1.1 Lissajous' Figures
	11.1.2 Damped Orthogonal Pendulums
	11.1.3 Harmonic Ratios as Fractions
	11.1.4 User Interface
	11.1.5 Project Header

	11.2 The Code
	11.2.1 Project Header
	11.2.2 Orthogonal Polynomials
	11.2.3 User Interface

	Part V Counterpoint à la Mode---Composing Music
	12 Johann Joseph Fux (1660 to 1741)
	12.1 Gradus Ad Parnassum---Counterpoint
	12.1.1 Melody---Direct, Contrary and Oblique Motion
	12.1.2 Harmony---Consonance and Dissonance
	12.1.3 Species Counterpoint
	12.1.4 Modal Music

	12.2 Strict Rules Allow Freedom of Composition

	13 Project Code
	13.1 The Colours of Noise
	13.2 New Language Features
	13.2.1 Project Header
	13.2.2 Sound Storage
	13.2.3 MIDI---Musical Instrument Digital Interface
	13.2.4 Composing the Cantus Firmus with Pink Noise Generation
	13.2.5 Sound Generation
	13.2.6 Sound Output of Cantus Firmus
	13.2.7 The Rules in Python
	13.2.8 Output of Whole, Half and Quarter Notes for Counterpoint
	13.2.9 User Interface and Sound

	13.3 The Code
	13.3.1 Project Header
	13.3.2 Generating the Cantus Firmus with Pink Noise
	13.3.3 Cantus Firmus Dynamics
	13.3.4 Rules of Counterpoint
	13.3.5 Converting MIDI to Frequency
	13.3.6 Handling Whole, Half and Quarter Notes
	13.3.7 Stereo Output
	13.3.8 User Interface

	Part VI On Safari
	14 Where Next?
	14.1 Generic Header
	14.2 Part II---Visualising Sound
	14.3 Part III---Creating Sound
	14.4 Part IV---Visualising Harmony
	14.5 Part V---Composition

	Appendix Curriculum Vitae
	Appendix Appendix Internet Links

